U.G. 3rd Semester Examination-2022 CHEMISTRY [HONOURS]

Course Code: CHEM-H-CC-T-05

Full Marks: 40

Time: $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions from the following:

 $2 \times 5 = 10$

- a) Define the chemical potential of a component in a mixture of chemical species in an open system.
- b) The work function of metallic Cesium is 2.14 eV. Calculate the kinetic energy of the electrons ejected by the incident light of wavelength 300 nm.
- c) Define fugacity coefficient.
- d) Write down the postulates of quantum mechanics.
- e) Is the function Ae^{-ax} an eigen function of the operator $\frac{d^2}{dx^2}$? If yes, determine the eigenvalue.

[Turn over]

- f) Define specific and equivalent conductance and state their relationship.
- g) Discuss the factors affecting ionic mobility of ions in solutions.
- h) How can one characterize a liquid flow as turbulent or laminar?
- 2. Answer any two questions:

 $5 \times 2 = 10$

- a) i) Calculate the uncertainty in velocity of an electron with uncertainty in position as 0.1 nm. (Mass of an electron = 9.1×10^{-31} kg and h = 6.63×10^{-34} J sec)
 - ii) Explain the origin of viscosity in gases.

2+3

- b) i) The mobility of an acetate ion in aqueous solution at 25°C is 4.24×10⁻⁸ m²s⁻¹v⁻¹. Calculate the molar ionic conductions.
 - An 0.02 (N) aqueous solution of KCl placed in a conductivity cell at 25°C shows a resistance of $380\,\Omega$. Specific conductance of the 0.02(N) aqueous solution of KCl at 25°C is 0.00276 Ω^{-1} cm⁻¹. The same cell filled with 0.01 (N) acetic acid (HAc) shows a resistance of $6434\,\Omega$. Calculate the degree of

20 25 + 10-39 6.00278

ii)

dissociation (α) of 0.01(N) HAc at 25°c. [The equivalent conductivity of NaAc, HCl and NaCl at infinite dilution at 25°C are given as 91.0, 426.2 and 126.5 Ω^{-1} cm² eqv⁻¹ respectively] 2+3

- c) i) The fugacity coefficient of a certain gas at 200 K temperature and 50 bar pressure is 0.72. Calculate the difference of its chemical potential from that of a perfect gas in the same state.
 - ii) Show that the linear combination A+ic and A-ic are not Hermitian if A and C are Hermitian operators. (1+2)+2
- d) i) Derive Gibbs-Duhem equation and express the partial molar volume of the ith component in a mixture in an open system in terms of chemical potential.
 - ii) The absolute viscosity of water at 293 K is 0.01002 poise. Time taken by equal volumes of water and chloroform to flow through a capillary tube are 39.7 seconds and 15 seconds respectively. Density of water is 1.0 g/cm³ and density of chloroform is 1.49 g/cm³. Calculate the relative and absolute viscosities of chloroform at 293 K. 3+2

[Turn over]

3. Answer any two questions: $10 \times 2 = 20$

- a) i) For conductometric titrations, the concentration of the titre should be at least 10 times greater than that of the solution to be titrated—justify.
 - ii) The ionic mobilities (m²v⁻¹s⁻¹) of the OH-F- and Cl⁻ ions are 20.50, 5.70 and 7.90, respectively— justify.
 - iii) Solve the time independent Schrödinger equation for a particle in a one dimensional box and derive the energy expression.
 - iv) Prove that the ideal mixing is not accompanied with a volume change. 2+2+(2+2)+2
- b) i) Establish a relation between viscosity coefficient and mean free path of a gas.
 - ii) Depict the conductometric titration curve for the titration of a mixture of oxalic acid and HCl with NaOH solution and explain the variation of conductivity with the volume of NaOH added.
 - iii) If two operators α and β are Hermitian, then find out the condition for $\alpha\beta$ to be Hermitian. 4+3+3

1300 1000

- c) i) State the Raoult's law. Based on the law, characterize an ideal solution.
 - ii) At 18°C, the mobilities of NH₄⁺ and ClO₄⁻ ions are 6.6×10⁻⁴ and 5.7×10⁻⁴ cm² volt⁻¹s⁻¹. Calculate the transport number of two ions and equivalent conductance of ammonium chlorate.
 - iii) 2 mol H_2 at 2 atm and 25°C and 4 mol N_2 at 3 atm and 25°C are mixed at constant volume. Calculate $\Delta_{mix}G$. What would be the value of $\Delta_{mix}G$ had the pressures been identical initially?
 - iv) State the law of mass action. 3+2+4+1
- d) i) What is the probability of finding a particle between x=0 and $x=\frac{a}{2}$ for a one-dimensional box of length a?
 - ii) Consider ideal mixing of 2 moles of toluene and 2 moles of benzene at 1 atm and 300K. Calculate the values of ΔH_{mix} , ΔS_{mix} and ΔG_{mix} for the process. (ln 2 = 0.69)

iii) State the Nernst's distribution law clearly mentioning the 'conditions for applicability' of the law. How one could apply the Nernst's distribution law to determine the equilibrium constant of the reaction, $I_2 + KI \Longrightarrow KI_3$. 3+3+(1+3)