U.G. 3rd Semester Examination - 2020 COMPUTER SCIENCE [HONOURS]

Course Code: COM.SC-H-CCL-T-305
(Data Structures)

Full Marks : 60 Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer any **ten** questions:

 $2 \times 10 = 20$

- a) Define time complexity and space complexity.
- b) What are the major differences between linear data structure and non-linear data structure?
- c) What are the limitations of recursion?
- d) What is a queue? Give two applications of queue.
- e) Explain postfix expression.
- f) Define strictly binary tree and almost complete binary tree.

- Note that a queue can be implemented using a linear linked list or a circular linked list. Which implementation is algorithmically more efficient?
- h) What is linear probing? Explain with an example.
- i) Write down various applications of stack.
- j) What is divide and conquer approach? Give an example.
- k) What is threaded binary tree? What is its usefulness?
- Define hash table and hash function.
- 2. Answer any **four** questions:

 $5 \times 4 = 20$

a) Design an algorithm/pseudocodes for searching a value from an integer array using binary search. Write down the best case time complexity of the binary search algorithm.

4+1

b) Find the post-order traversal of the binary tree using the following information:

In order: 10, 15, 17, 18, 20, 25, 30, 35, 38, 40, 50

Pre order: 20, 15, 10, 18, 17, 30, 25, 40, 35, 38, 50

[2]

- Suppose a two dimensional array A of size M×N is in memory. If the address of A[p][q] = B, find the address of A[i][j] considering each element of the array can be stored in 3 byte memory word.
- d) Apply quick sort algorithm considering the first element to be the pivot on an Array A1 = {5, 2, 3, 8, 7, 12, 2, 1, 10, 4, 3}.
- e) Design algorithms/pseudocodes for the insert and delete operations in a priority queue.

$$2\frac{1}{2} + 2\frac{1}{2}$$

- f) How collision can be resolved in hashing?
 Draw an almost complete binary tree that is not a strictly binary tree.
- 3. Answer any **two** questions: $10 \times 2 = 20$
 - a) i) Construct an AVL search tree if the elements are in the following order: 60, 70, 30, 20, 55, 90, 95, 80, 55, 35, 45, 40, 50.
 - ii) How directed graph are represented using adjacency linked-list?
 - iii) How can we compute the in-degree and out-degree of the vertices of a graph when the graph is represented by an adjacency linked-list? 5+2+3

- b) i) Convert the following infix expression to prefix notation: (A–B)/((C*D)+E).
 - ii) Construct the stack if the elements are in the following order and the size of the array is 5. Show all the steps.

```
PUSH(40);
PUSH(60);
PUSH(70);
PUSH(80);
PUSH(70);
POP();
POP();
PUSH(100);
PUSH(200);
POP();
POP();
POP();
POP();
PUSH(45);
PUSH(56).
                        5+5
```

- c) i) Explain the working principle of insertion sort.
 - ii) Apply selection sort to the list of following elements:

92, 25, 86, 48, 57, 33, 12, 108, 10.

- iii) What is the best case time complexity of quick sort algorithm? 3+6+1
- d) i) Design algorithms to perform insert and delete operations on a stack when the stack is represented by a linked list.
 - ii) Design an algorithm/pseudocode to delete an item from a doubly linked list.
 - iii) Name a sorting algorithm that does not require any comparison. (3+3)+3+1
