U.G. 2nd Semester Examination - 2019

MATHEMATICS

[HONOURS]

Course Code: MTMH/CC-T-04

Full Marks: 60

Time: $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

The symbols and notations have their usual meanings.

1. Answer any ten questions:

 $2 \times 10 = 20$

a) Determine whether x=0 is an ordinary point or a regular singular point of the differential equation:

$$2x^{2}\left(\frac{d^{2}y}{dx^{2}}\right)+7x(x+1)\left(\frac{dy}{dx}\right)-3y=0.$$

Write down the Cauchy-Euler type of equation in connection with homogeneous linear differential equation.

[Turn Over]

Show that e^x and e^{3x} are solutions of the differential equation:

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 3y = 0$$

Are they independent?

1 + 1

d) Prove that if $f_1(x)$ and $f_2(x)$ are two solutions of

$$P_0(x)\frac{d^2y}{dx^2} + P_1(x)\frac{dy}{dx} + P_2(x)y = 0$$

then $Af_1(x) + Bf_2(x)$ is also a solution of this equation where A and B are arbitrary constants.

- Show that $f(x, y) = xy^2$ satisfies the Lipschitz condition on the rectangle $R : |x| \le 1, |y| \le 1$ but does not satisfy a Lipschitz condition on the strip $S : |x| \le 1, |y| < \infty$.
- Show that for the problem $\frac{dy}{dx} = y$, y(0) = 1, the constant 'a' in Picard's theorem must be smaller than unity.
- g) From definition prove that the four functions $3e^x$, $-4e^x$, $5e^x$ and $6e^x$ are linearly dependent.

19/Math/H/IV

If S is defined by the rectangle
$$|x| \le a$$
, $|y| \le b$, then show that the function $f(x, y) = x \sin y + y \cos x$, satisfy the Lipschitz condition. Find the Lipschitz constant.

Prove that :
$$\left[\vec{a} \times \vec{b}, \ \vec{b} \times \vec{c}, \ \vec{c} \times \vec{a}\right] = \left[\vec{a} \ \vec{b} \ \vec{c}\right]^2$$
.

- Find the equation of a plane which contains the straight line $\vec{r} = t\vec{\alpha}$ and is perpendicular to the plane containing the straight lines $\vec{r} = t_1 \vec{\beta}$ and $\vec{r} = t_2 \vec{\gamma}$ where t, t_1 , t_2 are scalars and $\vec{\alpha}$, $\vec{\beta}$, $\vec{\gamma}$ are given vectors and \vec{r} is the current vector.
- k) Define a single-valued vector function of a scalar variable in a domain. Give an example. 1+1

If
$$\vec{r} = 3t\hat{i} + 3t^2\hat{j} + 2t^3\hat{k}$$
 then find $\frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2}$.

m) Find div \vec{F} and curl \vec{F} when $\vec{F} = \text{grad}$

$$(x^3+y^3+z^3-3xyz)$$
.

Evaluate
$$\int_{1}^{2} \left(\vec{r} \times \frac{d^{2}\vec{r}}{dt^{2}} \right) dt$$
 where $\vec{r} = 2t^{2}\hat{i} + t\hat{j} - 3t^{2}\hat{k}$.

19/Math/H/IV

(3)

[Turn Over]

If the vectors \vec{A} and \vec{B} be irrotational, then show that the vector $\vec{A} \times \vec{B}$ is solenoidal.

Answer any four questions:

$$5\times4=20$$

Solve by the method of variation of parameters a) the equation:

$$\frac{d^2y}{dx^2} + y = \sec^3 x \tan x.$$

- b) Solve: $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} + 2y = 10\left(x + \frac{1}{x}\right)$.
- Solve by the method of undetermined coefficients

$$\frac{d^{2}y}{dx^{2}} - 7\frac{dy}{dx} + 6y = (x - 2)e^{x}.$$

Reduce the expression $(\vec{\beta} + \vec{\gamma})$. $[(\vec{\gamma} + \vec{\alpha}) \times (\vec{\alpha} + \vec{\beta})]$ to its simplest form and prove that it vanishes when $\vec{\alpha}$, $\vec{\beta}$, $\vec{\gamma}$ are coplanar.

Prove that the necessary and sufficient condition e) for a vector $\vec{r} = \vec{f}(t)$ to have a constant direction

is
$$\vec{f} \times \frac{d\vec{f}}{dt} = 0$$
.

19/Math/H/IV

(4)

3+2

Show that the vector $\vec{V} = (4xy - z^3)\hat{i} + 2x^2\hat{j} - 3xz^2\hat{k}$ is irrotational. Show that \vec{V} can be expressed as the gradient of some scalar function ϕ .

2 + 3

3. Answer any two questions:

 $10 \times 2 = 20$

- a) Obtain the power series solution of y'' + (x-1)y' + y = 0 in powers of (x-2).
 - ii) Illustrate by an example that a continuous function may not satisfy a Lipschitz condition on a rectangle. Also give an example to show that the existence of partial derivative of f(x, y) is not necessary for f(x, y) to be a Lipschitz function.

5+5

b) i) Solve: $\frac{dx}{dt} - 7x + y = 0$

$$\frac{\mathrm{dy}}{\mathrm{dt}} - 2x - 5y = 0.$$

ii) For the differential equation

$$(x^2+1)\frac{d^2y}{dx^2}-2x\frac{dy}{dx}+2y=0$$
, given y=x is

19/Math/H/IV

(5

[Turn Over]

a solution. Reduce the order of the differential equation. Hence obtain another solution which is independent with the given one. Hence write the general solution.

5+5

- If $\phi = 3x^2yz$, $\vec{F} = y\hat{i} xz\hat{j} + x^2\hat{k}$, and C be the curve x = t, $y = 2t^2$, $z = t^3$ from t = 0 to t = 1, then evaluate the integrals
 - i) $\int_{C} \phi d\vec{r}$ and
 - ii) $\int_{C} \vec{F} \times d\vec{r}$. Also find the circulation of \vec{F} round the curve C, where $\vec{F} = y\hat{i} + z\hat{j} + x\hat{k}$ and C is the circle $x^2+y^2=1$, z=0. 7+3
- d) i) Prove that the necessary and sufficient condition that the vector field defined by the vector point function \vec{F} with continuous derivatives be conservative is that curl $\vec{F} = \nabla \times \vec{F} = 0$.

ii) Evaluate: $\iint_{S} \vec{F} \cdot \vec{n} \, dS$ where $\vec{F} = 6z\hat{i} - 4\hat{j} + y\hat{k}$ and S is that part of the plane 2x+6y+3z=10 which is located in the first octant.

5+5