U.G. 5th Semester Examination - 2022

MATHEMATICS

[HONOURS]

Discipline Specific Elective (DSE)

Course Code: MATH-H-DSE-T-1A

(Linear Programming)

Full Marks: 60

Time: $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks. The notations and symbols have their usual meanings.

1. Answer any ten questions:

 $2 \times 10 = 20$

i) Find the basic feasible solutions of the equations

$$x_1 + 2x_3 = 1$$

$$x_2 + x_3 = 4$$
.

- ii) Write down the relationship between the optimum value of maximization and minimization type problems.
- iii) Express the following LPP as standard maximization problem:

[Turn Over]

Minimize
$$Z = 4x_1 + 3x_2 + 2x_3$$

subject to $x_1 + 4x_2 - x_3 \le 7$
 $x_1 - 3x_2 + 2x_3 \le 12$
 $2x_1 + x_2 + x_3 = 8$
 $4x_1 + 7x_2 - x_3 \ge 16$
 $x_1, x_2, x_3 \ge 0$.

- iv) What is the relation between the optimal values of primal and dual problems (assume that both exist)?
- v) Write down the dual of the following problem:

Maximize
$$Z = 2x_1 + 3x_2 + x_3$$

subject to
$$2x_1 + x_2 - 3x_3 \le 7$$

$$2x_1 - x_2 + x_3 \le 6$$

$$x_1 + 3x_2 + x_3 \le 8$$

$$2x_1 + 3x_2 - x_3 \ge 12$$

$$x_1, x_2, x_3 \ge 0$$

 x_2 is unrestricted in sign.

- vi) Show that a hyperplane is a convex set.
- vii) Extreme points are finite in number—Justify.
- viii) Prove that the set defined by $X = \{x : |x| \le 7\}$ is a convex set.

- ix) Find out the extreme points (if any) of the convex set $S = \{(x, y: |x| \le 2, |y| \le 1)\}$.
- Is the point (1,10) in the convex set of feasible solutions determined by the constraints $2x_1 + 5x_2 \le 40, \ x_1 + x_2 \le 11, \ x_2 \ge 4, \ x_1, \ x_2 \ge 0,$ a solution?
- xi) State fundamental theorem of LPP.
- xii) What is the criterion for the existence of multiple optimal solutions for Transportation Problem?
- Xiii) What is unbalanced Transportation Problem?

 How can you convert it into a balanced

 Transportation Problem?
- xiv) Define a symmetric game. Why is it called so?
- xv) State Fundamental theorem of Game Theory.
- 2. Answer any four questions: $5\times4=20$
 - j) Solve the following L.P.P. by simplex method:

Maximize
$$Z = 60x_1 + 50x_2$$

subject to $x_1 + 2x_2 \le 40$
 $3x_1 + 2x_2 \le 60$
 $x_1, x_2 \ge 0$.

[Turn Over]

Maximize
$$Z = 10x_1 + 15x_2$$

subject to
$$x_1 + x_2 \ge 2$$

$$3x_1 + 2x_2 \le 6$$

$$x_1, x_2 \ge 0$$
.

iii) Show that the feasible solution
$$x_1 = 1$$
, $x_2 = 1$, $x_3 = 0$ and $x_4 = 2$ to the system

$$x_1 + x_2 + x_3 = 2$$

$$x_1 + x_2 - 3x_3 = 2$$

$$2x_1 + 4x_2 + 3x_3 - x_4 = 4$$

$$x_1, x_2, x_3, x_4 \ge 0$$
.

is not basic.

iv) For what value of a, the game with the following payoff matrix is strictly determinable?

	A				
		I	II	III	
	I	a ,	5	2	
В	II	-1	a	-8	
	Ш	-2	3	a	

v) State and prove weak duality theorem.

Find out the optimal (minimum) assignment cost from the following cost matrix:

	I	II	III	IV
A	18	26	17	11
В	13	28	14	26
C	38	19	18	15
D	19	26	24	10

3. Answer any two questions:

$$10 \times 2 = 20$$

i) a) Solve the following transportation problem:

	D ₁	D ₂	D ₃		
Oı	50	30	220	1	
O ₂	90	45	170	3	
O ₃	270	200	50	4	
	4	2	2		

b) Show that

$$S = \{(x_1, x_2, x_3) : 2x_1 - x_2 + x_3 \le 4, x_1 + 2x_2 - x_3 \le 1\}$$
is a convex set.
$$6 + 4 = 10$$

ii) Solve the following L.P.P. by using Big-M method:

Maximize
$$Z = 5x_1 - 2x_2 + 3x_3$$

subject to
$$2x_1 + 2x_2 - x_3 \ge 2$$

$$3x_1 - 4x_2 \le 3$$

$$x_2 + 3x_3 \le 5$$

$$x_1, x_2, x_3 \ge 0$$
.

iii) Write down the dual of the following problem:

10

Minimize
$$Z = 3x_1 + 4x_2$$

subject to
$$x_1 + x_2 \le 12$$

$$2x_1 + 3x_2 \le 21$$

$$x_1 \leq 8$$

$$x_2 \le 6$$

$$x_1, x_2 \ge 0.$$

Solving the dual problem, discuss the nature of solution of the primal problem.

iv) a) Prove that, the Transportation Problem always has a feasible solution.

B) Reduce the following game to 2×2 game and then solve it: