U.G. 5th Semester Examination - 2021

MATHEMATICS

[PROGRAMME]

Skill Enhancement Course (SEC)

Course Code: MATH-G-SEC-T-3A&B

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer all the questions from selected Option.

OPTION-A

MATH-G-SEC-T-3A

(Integral Calculus)

1. Answer any **five** questions:

- $2 \times 5 = 10$
- a) If $f(x) \ge g(x)$ are integrable functions for all real $x \in [a \ b]$, then prove that $\int_a^b f(x) \ dx \ge \int_a^b g(x) \ dx$.
- b) Prove that $\int_0^2 |1 x| \, dx = 1$.
- c) If $f(x) = \int_0^x \cos^4 t \, dt$, prove that $f(x+\pi) = f(x) + f(\pi)$.
- d) Obtain a reduction formula for $\int \cot^n x \, dx$.
- e) Evaluate $\int_0^a \int_0^x \int_0^{x+y} e^{x+y+z} dxdydz$.

- f) Find the area of the region enclosed by the curve $\sqrt{x} + \sqrt{y} = \sqrt{5}$ and the coordinate axes.
- g) Find the volume of the solid obtained by revolving the cycloid $x = a(\theta + \sin \theta)$ about its base.
- h) Find the perimeter of the astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$.
- 2. Answer any **two** questions:
 - a) If $I_n = \int_0^{\frac{\pi}{2}} \cos^n x \ dx$ (*n* being an integer greater than 1), then prove that $I_n = \frac{n-1}{n} I_{n-2}$.
 - b) If $\phi(x) = \int_{-1}^{1} \frac{\sin x}{1+t^2} dt$, find $\phi'\left(\frac{\pi}{3}\right)$.
 - Prove that the length of the arc of the curve $r = ae^{\theta \cot \alpha}$ between the radii vectors r_1 and r_2 is $(r_2 r_1) \sec \alpha$.
 - d) The area enclosed by $y^2 = 4x$ and $x^2 = 4y$ is revolved about the x-axis. If V be the volume of revolution, prove that $5V = 96\pi$.
- 3. Answer any **two** questions:

 $10 \times 2 = 20$

 $5 \times 2 = 10$

- a) Evaluate:
 - i) $\int \frac{1+x^2}{(1-x^2)\sqrt{1+x^2+x^4}} \ dx$
 - ii) $\int \tan^3 3x \ dx$

5+5

b) i) Evaluate $\lim_{n\to\infty} \frac{1}{\sqrt{n}} \left\{ 1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} \right\}$.

- ii) Prove that the area between the curve $y^2(a+x) = (a-x)^3$ and its asymptote is $3a^2\pi$.
- c) i) Prove that the length s of an arc of the curve $x \sin \theta + y \cos \theta = f'(\theta)$, $x \cos \theta y \sin \theta = f''(\theta)$ is given by $s = f(\theta) + f''(\theta) + c$, where c is a constant.
 - ii) Show that the volume of the solid formed by revolving the ellipse $x = a\cos\theta, \ y = b\sin\theta$ about the line x = 2a is $4\pi^2a^2b$.
- d) i) If s be the length of the curve $r=a\tanh\frac{\theta}{2}$ between the origin and $\theta=2\pi$, and Δ be the area between the same points, show that $\Delta=a(s-a\pi)$.
 - ii) If $I_{m,n} = \int_0^1 x^m (1-x)^n dx$, where m and n are positive integers, prove that $(m+n+1)I_{m,n} = nI_{m,n-1}$.

OPTION-B MATH-G-SEC-T-3B

(Vector Calculus)

1. Answer any **five** questions:

- $2 \times 5 = 10$
- a) If $\vec{r} = a\cos t \hat{i} + a\sin t \hat{j} + bt \hat{k}$ where $\hat{i}, \hat{j}, \hat{k}$ have their usual meaning, then find

$$\left(\frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2}\right)$$

- If \hat{a} is a unit vector in the direction of \vec{b} , a vector function of the scalar variable t, show that $\hat{a} \times \frac{d\hat{a}}{dt} = \left(\vec{b} \times \frac{d\vec{b}}{dt}\right) / (\vec{b} \cdot \vec{b}).$
- Show that $\vec{F} = (2xy + z^3)\hat{i} + x^2\hat{j} + 3xz^2\hat{k}$ is a conservative force field.
- d) If $\vec{F} = (3x^2 + 6y)\hat{i} 14yz\hat{j} + 20xz^2\hat{k}$, find $\int_C \vec{F} \cdot d\vec{r}$, from (0, 0, 0) to (1, 1, 1) along the path C given by x = t, $y = t^2$, $z = t^3$.
- e) Show that if the vectors $\vec{\alpha}$, $\vec{\beta}$ are irrotational, then the vector $\vec{\alpha} \times \vec{\beta}$ is solenoidal.
- f) If \vec{a} is constant vector, then prove that $curl(\vec{a}.\vec{r})\vec{a} = \vec{0}$.

- g) If \vec{A} has constant magnitude then show that $\vec{A} \times \frac{d\vec{A}}{dt} = 0$.
- h) Find a unit normal to the surface $2x^2y + 3yz = 4$ at the point (1, -1, -2).
- 2. Answer any **two** questions: $5 \times 2 = 10$
 - a) If $\frac{d\vec{a}}{dt} = \vec{r} \times \vec{a}$ and $\frac{d\vec{b}}{dt} = \vec{r} \times \vec{b}$ then show that $\frac{d}{dt}(\vec{a} \times \vec{b}) = \vec{r} \times (\vec{a} \times \vec{b})$ where \vec{r} is a constant vector and \vec{a}, \vec{b} are vector functions of a scalar variable t.
 - b) Find divergence and curl of the vector $\vec{v} = \frac{\hat{r}}{r}$, where \vec{r} is the unit vector along \vec{r} and r is the magnitude of the vector $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$.
 - Find the constants p and q such that the surfaces $px^2 qyz = (p+2)x$ and $4x^2y + z^3 = 4$ are orthogonal at (1, -1, 2).
 - d) Find the equation of the tangent plane and normal line to the surface $x^2 + y^2 z = 0$ at the point (2, -1, 5).
- 3. Answer any **two** questions: $10 \times 2 = 20$
 - a) i) Determine a, b and c so that \vec{u} is irrotational where

$$\vec{u} = (x+2y+az)\hat{i} + (bx-3y-z)\hat{j} + (4x+cy-2z)\hat{k}$$

ii) Let $\phi = x^3 + y^3 - z^3$ be a scalar point function. Verify that $curl(grad \phi) = \vec{0}$.

5+5

- Evaluate $\iint_{S} \vec{A} \cdot \vec{n} dS$ where $\vec{A} = yz\hat{i} + zx\hat{j} + xy\hat{k}$ and S is the part of the surface $x^2 + y^2 + z^2 = 1$ which lies in the first octant.
- c) i) Let V be the closed region bounded by the surfaces $x = 0, x = 2, y = 0, y = 6, z = x^2, z = 4 \quad \text{and}$ $\vec{F} = y\hat{i} + 2x\hat{j} z\hat{k} \cdot \text{Find} \iiint_V \nabla \times \vec{F} dV.$
 - ii) If $\vec{\alpha} = (\sin \theta, \cos \theta, \theta), \vec{\beta} = (\cos \theta, -\sin \theta, -3) \text{ and }$ $\vec{\gamma} = (2,3,1), \text{ find the value of }$ $\frac{d}{d\theta} \{ \vec{\alpha} \times (\vec{\beta} \times \vec{\gamma}) \} \text{ at } \theta = 0.$ 6+4
- Prove that $\oint_C \vec{F} \cdot d\vec{r} = 0$ for every closed curve C if and only if $\vec{\nabla} \times \vec{F} = \vec{0}$ if everywhere. 5+5
