U.G. 3rd Semester Examination - 2020 MATHEMATICS [HONOURS]

Course Code: MATH-H-CC-T-07

Full Marks : 40 Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Symbols have their usual meanings.

- 1. Answer any **five** questions: $2 \times 5 = 10$
 - a) Find the number of significant figures in V_A w.r.t V_T where V_A =0.05411, V_T =0.05418.
 - b) Evaluate $\left(\frac{\Delta^2}{E}\right) x^3$.
 - c) Why is Newton-Raphson method called the method of tangent.
 - d) Explain the principle of numerical integration.
 - e) Is it possible to find numerically least Eigen value for a matrix A by Power method? Discuss.
 - f) What do you mean by the Degree of precision of a quadrature formula.

[Turn over]

- g) What do you mean by the diagonally dominant for system of linear equations?
- h) Show that any divided difference of a constant is zero.
- 2. Answer any **two** questions:
 - a) Establish Newton's forward interpolation formula. When is this formula used?

 $5 \times 2 = 10$

- By integrating Newton's forward interpolation formula, obtained the basic form of Simpson's ¹/₃ rd rule for numerical integration, stating error term. Also, obtain the composite form of this rule.
- c) Describe Newton -Raphson method for computing a simple real root of an equation f(x)=0. What are its advantages and disadvantages in comparison to the general fixed point iteration method?
- d) Describe the Gauss-elimination method for a system of 3 equations with 3 unknowns.
- 3. Answer any **two** questions: $10 \times 2 = 20$
 - a) Establish Gauss-Jacobi iteration method for numerical solution of a system of n linear equations with *n* -unknowns. Deduce the

- condition of convergence for Gauss-Jacobi iteration method.
- b) Describe Newton's General interpolation formula with remainder. Hence, deduce Newton's backward interpolation formula from this method.
- c) i) Explain the basic principle and establish the formula of Regula-Falsi method. Also state its advantages and disadvantages.
 - ii) Describe Power method for finding numerically largest eigen value of a square matrix.

State the condition of convergence.

d) Establish Lagrange's polynomial interpolation formula. If x_1, x_2, \dots, x_n be the interpolating points and $l_i(x)$ $(i = 0,1,2,\dots,n)$ be the Lagrangian functions then show that $\sum_{i=0}^{n} l_i(x) = 1$.
