U.G. 5th Semester Examination - 2020

MATHEMATICS

[HONOURS]

Discipline Specific Elective (DSE)
Course Code: MATH-H-DSE-T-2A

Full Marks: 60

Time: $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer any **ten** questions:

 $2 \times 10 = 20$

a) Find the constant α such that the function

$$f(x) = \begin{cases} \alpha x^2 & 2 < x < 3\\ 0 & otherwise \end{cases}$$

is a density function, and compute P(1 < X < 2).

- b) If $\chi^*=(\chi-\mu)/\sigma$ is a standardized random variable, prove that (i) $E(X^*)=0$, (ii) $Var(X^*)=1$.
- The quantity $E[(X-a)^2]$ is minimum when $a = \mu = E(X)$.
- d) Define coefficient of skewness and kurtosis of a distribution.

- e) State Chebyshev's inequality for a continuous random variable.
- f) Find the expectation of the sum of points in tossing a pair of fair dice.
- g) Find the expectation of a discrete random variable x whose probability function is given by $f(x) = (1/3)^x$ (x = 1,2,3...)
- n) Find the probability of not getting a 7 or 11 total on either of two tosses of a pair of fair dice.
- i) Can the function

$$F(X) = \begin{cases} c(1-x^2) & 0 \le x \le 1\\ 0 & otherwise \end{cases}$$

be a distribution function? Explain.

- j) Prove that $-1 \le \rho \le 1$.
- k) Let X have density function $f(x) = \begin{cases} 1/(b-a) & a \le x \le b \\ 0 & otherwise \end{cases}$. Find the kth moment about
 - the origin,
 - ii) the mean.
- l) Find (i) the covariance, (ii) correlation coefficient of two random variables X and Y if

$$E(X) = 2, E(Y) = 3, E(XY) = 10, E(X^2) = 9, E(Y^2) = 16.$$

- m) Define conditional expectation.
- n) Find the probability of drawing three aces at random from a deck of 52 ordinary cards if the cards are (i) replaced and (ii) not replaced.
- o) Find the characteristic function of a random variable X having density function $f(x) = ce^{-k|x|}$, $-\infty < x < \infty$, where k > 0 and c is suitable constant.
- 2. Answer any **four** questions: $5 \times 4 = 20$
 - a) State and prove law of large number theorem.

5

b) Find the variance and standard deviation of the sum obtained by tossing a pair of fair dice.

3+2

[Turn over]

- Show that $E[(X \mu)^2] = E(X^2) [E(X)]^2$. Hence find var(X) and σ_x , where E(X) = 2, $E(X^2) = 8$.
- d) If X and Y are independent random variables, then show that E(XY) = E(X)E(Y).
- e) Let X have density function

$$f(x) = \begin{cases} e^{-x} & x > 0 \\ 0 & x \le 0 \end{cases}$$
 Find the density function of Y = X².

[3]

f) Define type-I and type-II errors.

The probability density function of the random variable X is

 $f(x) = \begin{cases} \frac{1}{\lambda} e^{-x/\lambda} & x > 0 \\ 0 & x \le 0 \end{cases}, \text{ where } \lambda > 0. \text{ For testing the hypothesis } H_0: \lambda = 3 \text{ against } H_A: \lambda = 5 \text{ a test is given as "Reject } H_0 \text{ if } X \ge 4.5". \text{Find the probability of type-I error and power of the test.}$

- 3. Answer any **two** questions: $10 \times 2 = 20$
 - a) Design a decision rule to test the hypothesis that a coin is fair if a sample of 64 tosses of the coin is taken and if a level of significance of (a) 0.05, (b) 0.01 is used. How could you design a decision rule to avoid a type-II error?

 5+5
 - b) Prove that the mean and variance of binomially distributed random variable are respectively, $\mu = np$ and $\sigma^2 = npq$. If the probability of defective bolt is 0.25, find the mean and standard deviation for the number of defective bolts in a total of 400 bolts.
 - c) Let X and Y be independent random variables having density function

$$f(u) = \begin{cases} 2e^{-2u} & u \ge 0\\ 0 & otherwise \end{cases}.$$

666/3 Math. [4]

Find E(X + Y), $E(X^2 + Y^2)$ and E(XY).

Does
$$(i)E(X+Y) = E(X) + E(Y)$$
,

(ii)
$$E(XY) = E(X)E(Y)$$
? Explain. 5+5

d) If the random variable *X* and *Y* have the joint density function

$$f(x,y) = \begin{cases} xy/96 & 0 < x < 4, 1 < y < 5 \\ 0 & otherwise \end{cases}$$
, find the density function of $U = X + 2Y$.

[5]