U.G. 3rd Semester Examination - 2022 MATHEMATICS

[HONOURS]

Course Code: MATH-H-CC-T-06

(Group Theory-I)

Full Marks: 60

Time: $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Symbols and notations have their usual meanings.

1. Answer any ten questions:

 $2 \times 10 = 20$

- a) If a and b are elements of a group G with the identity element e such that $ab \neq ba$, then prove that $aba \neq e$.
- b) If a be an element of a group of order n and p is prime to n, then prove that the order of a^p is n.
- Let $GL(2, \mathbb{R})$ be the group of all non-singular 2×2 matrices over \mathbb{R} . Prove that the set $H = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a^2 + b^2 \neq 0 \right\} \text{ is a subgroup of } GL(2, \mathbb{R}).$
- d) If in a group G, $ba = a^m b^n$ for all $a, b \in G$, show that $O(a^m b^{n-2}) = O(ab^{-1})$, where m, n are integers.

mai b
[Turmover]

ab

rédité e)

e) Let a and b be two elements of a group G. Show that there exists an element $g \in G$ such that $g^{-1}abg = ba$.

M

Let a and b be two elements of a group such that O(a) = 4, O(b) = 2, and $a^3b = ba$. Show that O(ab) = 2.

V

Give an example of a finite abelian group which is not cyclic.

h) P

Prove that $\left\{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} : n \in \mathbb{Z} \right\}$ is a cyclic subgroup of GL(2, \mathbb{R}).

i)

If $P = \left\{ \frac{1+3n}{1+3m} : m, n \in \mathbb{Z} \right\}$, then show that P is a subgroup under multiplication of all non-zero rational numbers.

j)

Verify whether $\begin{cases} \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in \mathbb{R} \text{ and } ac \neq 0 \end{cases} \text{ is a normal subgroup of GL(2, } \mathbb{R} \text{)}.$

(k

Show that the group $(\mathbb{Q}, +)$ is not cyclic. \bullet Give an example of an infinite group each element of which has a finite order.

- Let K be a subgroup of a group G such that $x^2 \in K$ for all $x \in G$. Prove that K is normal in G.
- Show that $(\mathbb{Q}, +)$ is not isomorphic to $(\mathbb{Q}^+, +)$.
- o) Let G be a group. Prove that the mapping $\alpha(g) = g^{-1}$ for all $g \in G$ is an automorphism if and only if G is abelian.
- 2. Answer any four questions:
 - a) Let H be a subgroup of a finite group G. Suppose that $g \in G$ and n is the smallest positive integer such that $g^n \in H$. Prove that n divides O(G).
 - b) If H and K are subgroups of a group G, then prove that $H \cup K$ is a sub-group of G if and only if $H \subseteq K$ or $K \subseteq H$.
- Let H be a subgroup of a group G. Prove that $\bigcap_{g \in G} gHg^{-1}$ is a normal subgroup of G.
 - d) Prove that the additive group G of complex numbers a+ib is isomorphic to the multiplicative group G' of rationals of the form 2^a3^b $(a,b \in \mathbb{Z})$.
 - e) Prove that any finitely generated subgroup Of $(\mathbb{Q}, +)$ is cyclic.

[Turn over]

Let $f: G \to G_1$ be a homomorphism of groups. Then the quotient group G/Ker(f) is isomorphic to the subgroup Im(f) of G_1 .

3. Answer any two questions:

- $10 \times 2 = 20$
- Prove that a finite group can not be expressed as the union of two of its proper subgroups.
 - Prove that every group of prime order is cyclic.
- Let G be a subgroup of a group G such that [G:H] = 2. Prove that H is a normal subgroup of G.
- b) i) Let H and K be subgroups of a finite group G with $H \subseteq K \subseteq G$. Prove that [G:H] = [G:K][K:H].
 - ii) Prove that the *n*th roots of unity form a cyclic group.
 - iii) Let ρ be a congruence relation on a group G. Show that there exists a normal subgroup H of G such that $\rho = \{(a,b) \in G \times G : a^{-1}b \in H\}.$ 3
- c) i) Let G be a group and Z(G) be the center of G. If G/Z(G) is cyclic, then prove that G is abelian.

- ii) Prove that a subgroup H of a group G is a normal subgroup if and only if every right coset of H is also a left coset.
- Let G, H, and K be groups. Suppose that the mappings $f: G \to H$ and $g: H \to K$ are homomorphisms. Prove that $gf: G \to K$ is also a homomorphism.

Let f be a homomorphism of a group G into a group H. Then prove that f is one-one if and only if $Ker(f) = \{e\}$, where e is the identity element of the group G. 3

- ii) Prove that an infinite cyclic group is isomorphic to the additive group Z of all integers.
- iii) Let G be a finite group with the identity element e and f be an automorphism of G such that for all $a \in G$, f(a) = a if and only if a = e. Show that for all $g \in G$, there exists $a \in G$ such that $g = a^{-1}f(a)$.

3

4

gf (91)
g(91) (5)