Derangements

Arighna Pan
Nabadwip Vidyasagar College, Batch of 2022
\section*{Departmental Seminar-2023}

1. Introduction

2. PIE
3. Think the problem in another way
4. Proof

5. Conclusion

Introduction

Problem statement

How many permutations of $[n]=\{1,2, \ldots, n\}$ have no "fixed points"? Such permutations are called "Derangements" and number of derangements is denoted by $D(n)$ (also by ! n)

PIE

Do you remember?

- Principal of exclusion and inclusion (PIE): If $A_{1}, A_{2}, \ldots, A_{n}$ are subsets of same finite set A, then

$$
\begin{equation*}
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|=\sum_{j=1}^{n}(-1)^{j-1} \sum_{i_{1}, i_{2}, \ldots . i_{j}}\left|A_{i_{1}} \cap \ldots \cap A_{i_{j}}\right| \tag{1}
\end{equation*}
$$

known as "Sieve formula"

Think the problem in another way

Proof

Proof

The compliment of the given case is at least one of from the party has picked his own hat.
The total \# ways to pick any hat is n! We denote $A_{i}=\left\{\#\right.$ ways so that i^{\prime} th person does get his own hat $\} ; \forall i \in[n]$

Proof

The compliment of the given case is at least one of from the party has picked his own hat.
The total \# ways to pick any hat is $n!$.
We denote
$A_{i}=\left\{\#\right.$ ways so that i^{\prime} th person does get his own
hat $\} ; \forall i \in[n]$

Proof

The compliment of the given case is at least one of from the party has picked his own hat.
The total \# ways to pick any hat is $n!$.
We denote
$A_{i}=\left\{\#\right.$ ways so that i^{\prime} th person does get his own hat $\} ; \forall i \in[n]$

Proof

Clearly

$$
\begin{equation*}
A_{i}=(n-1)!, \forall i \tag{2}
\end{equation*}
$$

Proof

Clearly

$$
\begin{gather*}
A_{i}=(n-1)!, \forall i \tag{2}\\
\sum_{i=1}^{n} A_{i}=\binom{n}{1}(n-1)!=n! \tag{3}
\end{gather*}
$$

Proof

Observe we have done some over-counting in previous ${ }^{\text {T }}$ step. So we have to take out all of $A_{i} \cap A_{j}$

Proof

Observe we have done some over-counting in previous ${ }^{\text {T }}$ step. So we have to take out all of $A_{i} \cap A_{j}$

$$
\begin{equation*}
A_{i} \cap A_{j}=(n-2)!; \forall i \neq j \tag{4}
\end{equation*}
$$

Proof

Observe we have done some over-counting in previous step. So we have to take out all of $A_{i} \cap A_{j}$

$$
\begin{equation*}
A_{i} \cap A_{j}=(n-2)!; \forall i \neq j \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i, j \in[n]} A_{i} \cap A_{j}=\binom{n}{2}(n-2)!=\frac{n!(n-2)!}{2!(n-2)!}=\frac{n!}{2!} \tag{5}
\end{equation*}
$$

Proof

Similarly

$$
\begin{equation*}
\sum_{i_{1}, i_{2}, \ldots, i_{k} \in[n]}\left\{\bigcap_{j=1}^{k} A_{i_{j}}\right\}=\binom{n}{k}(n-k)!=\frac{n!}{k!} \tag{6}
\end{equation*}
$$

Proof

So from (1) total, \# ways of at least one of them get his own hat is

$$
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|=\sum_{j=1}^{n}(-1)^{j-1} \sum_{i_{1}, i_{2}, \ldots, i_{j}}\left|A_{i_{1}} \cap \ldots \cap A_{i_{j}}\right|
$$

Proof

So from (1) total, \# ways of at least one of them get his own hat is

$$
\begin{gather*}
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|=\sum_{j=1}^{n}(-1)^{j-1} \sum_{i_{1}, i_{2}, \ldots, i_{j}}\left|A_{i_{1}} \cap \ldots \cap A_{i_{j}}\right| \\
n!-\frac{n!}{2!}+\frac{n!}{3!}-\ldots+(-1)^{n-1} \frac{n!}{n!}=A(n) \tag{7}
\end{gather*}
$$

Conclusion

Final answer

The number of derangements is

$$
D(n)=n!-A(n)=\sum_{i=2}^{n}(-1)^{i} \frac{n!}{i!}
$$

Limiting Case

$$
\frac{!n}{n!}=\frac{D(n)}{n!}=\frac{1}{0!}-\frac{1}{1!}+\sum_{i=2}^{n}(-1)^{i} \frac{1}{i!}=\sum_{i=0}^{n}(-1)^{i} \frac{1}{i!}
$$

Limiting Case

$$
\frac{!n}{n!}=\frac{D(n)}{n!}=\frac{1}{0!}-\frac{1}{1!}+\sum_{i=2}^{n}(-1)^{i} \frac{1}{i!}=\sum_{i=0}^{n}(-1)^{i} \frac{1}{i!}
$$

Taking $\lim _{n \rightarrow \infty}$ at both sides

$$
\lim _{n \rightarrow \infty} \frac{!n}{n!}=\lim _{n \rightarrow \infty} \sum_{i=0}^{n}(-1)^{i} \frac{1}{i!}=e^{-1}
$$

If things are not so good, you maybe want to imagine something better - John Forbes Nash

Thank You!

