CC 01 (Calculus, Geometry & Differential Equations) F.M: 10 TIME: 30 MIN * Required

1. Email *

2. NAME *

3. ROLL NUMBER *

Untitled Section

4.

1. f(x) = ||x| - 1| the points where f(x) is not differentiable. a. 0, ± 1 b. ± 1 c. 0 d. 1

Mark only one oval.

A B C D 5.

2.
$$\int_{0}^{\frac{\pi}{2}} (\cos x)^{11} (\sin x)^{9} dx =$$

a. $\frac{1}{10!}$ b. $\frac{5!6!}{11!}$ c. $\frac{10!}{6!5!}$ d. 0

Mark only one oval.

6.

3.
$$y = (cosx)^2 (sinx)^3$$
, then find $\frac{d^{105}y}{dx^{105}}$ at x=0
a. $\frac{1}{16} (2 + 3^{105} - 5^{105})$
b. $\frac{1}{16} (2 - 3^{105} - 5^{105})$
c. $\frac{1}{16} (2 + 3^{105} + 5^{105})$
d. 0

Mark only one oval.

7.

4. Solve
$$(px-py)(py+x)=2p$$

a. $y^2 = x + \frac{c}{c+1}$
b. $y^2 = cx^2 - \frac{2c}{c+1}$
c. $x^2 = cy + \frac{c}{c+1}$
d. None of these

Mark only one oval.

A B C D

8.

5. Solve
$$6y^2 dx - x(x^3 + 2y) dy = 0$$

a. $\frac{y}{x^3} = \frac{-\log(x)}{2} + c$
b. $\frac{y^2}{x^3} = \frac{-\log(x)}{2} + c$
c. $\frac{y}{x^3} = \frac{\log(x)}{2} + c$
d. None of these

Mark only one oval.

A B C D

This content is neither created nor endorsed by Google.

