	SE 4A IST INTERNAL
Α	NSWER ALL THE FOLLOWING QUESTIONS.
SI	ubhajit@nvc.ac.in Switch account
Ć	2
*	Required
Er	nail *
Y	our email
No	ame *
Y	our answer
Re	gistration Number *
Y	our answer
Ro	No. *
Y	our answer

1. Equal forces act along the edges BC, CA, AB, DA, DB, DC of a regular tetrahedron of edge 'a'. The central axis is the perpendicular from D to the plane ABC and the pitch of the equivalent wrench is

2)	a
a)	2

b)
$$\frac{a}{3\sqrt{2}}$$

c)
$$\frac{a}{2\sqrt{2}}$$

d) $2\sqrt{2}a$

(-)	-
✓		C

-	- 1	h
١.		U
-	_	

-)	-
	•

2. A particle moves in a plane with an acceleration which is always directed towards a fixed point 0 in the plane. It is found that the path is given by $r = a(1 + 2\sin\theta)$. The apsidal distances are equal to

- a) 2a and $\frac{a}{2}$
- b) 3a and a
- c) 4a and 2a
- d) 5a and 3a

a

0

 \bigcirc d

3. At vertex C of triangle ABC which is right angled at C, the principal axes are inclined to sides at an angle

a) $\tan^{-1} \frac{ab}{a^2 - b^2}$ b) $\tan^{-1} \frac{2ab}{a^2 - b^2}$ c) $\frac{1}{2} \tan^{-1} \frac{ab}{a^2 - b^2}$ d) None of these

4. Suppose a rigid body is in motion. At any time 't' let \vec{r} be the position vector of mass 'm' of the body and \vec{F} and \vec{R} the external and internal forces respectively acting on it, then

a) $\sum \vec{F} + \sum m \left(\frac{d^2 \vec{r}}{dt^2} \right) = \vec{0}$

b) $\sum \vec{F} + \sum -m \left(\frac{d^2 \vec{r}}{dt^2} \right) = \vec{0}$

c) $\sum \vec{R} + \sum m \left(\frac{d^2 \vec{r}}{dt^2} \right) = \vec{0}$

d) $\sum \vec{R} + \sum -m \left(\frac{d^2 \vec{r}}{dt^2} \right) = \vec{0}$

- 5. If the nearly circular orbit of a particle be $p^2(a^{m-2}-r^{m-2})=b^m$, then the apsidal angle is
- b) $\frac{\pi}{\sqrt{2m}}$
- c) $\frac{2\pi}{\sqrt{m}}$ d) $\frac{3\pi}{\sqrt{m}}$

Submit Clear form

Never submit passwords through Google Forms.

This form was created inside of NABADWIP VIDYASAGAR COLLEGE. Report Abuse

Google Forms

