Department of Mathematics Internal Examination 2023 4th Semester CC-08

F.M.:-15 Tim	ne: 40 min	
Answer any 3 questions from the following.	$5 \times 3 = 15$	
1. Define divisor of zero in a ring. Prove that a ring R satisfies cancellation law if and		
only if R is without zero divisor.	1 + 4	
2. Define integral domain. Prove that for any positive integer n, the ring Z_n of all		
integers modulo n is an integral domain if and only if n is prime integer	er. $1+4$	
3. Let \bigoplus and \bigcirc be defined on the set of all integers Z by the rule $a \bigoplus b = a + b - 1$		
and $a \odot b = a + b - ab$ for $a, b \in Z$. Prove that (Z, \bigoplus, \odot) is a ring with unity. Is it		
commutative ring?	4 + 1	
4. Define a field. Prove that a finite integral domain is a field.	2 + 3	

Date: 24.07.2023

Department of Mathematics Internal Examination 2023 4th Semester CC-08

F.M.:-15	Time: 40 min	
Answer any 3 questions from the following.	$5 \times 3 = 15$	
1. Define divisor of zero in a ring. Prove that a ring R satisfies cancellation law if and		
only if R is without zero divisor.	1 + 4	
2. Define integral domain. Prove that for any positive integer n, the ring Z_n of all		
integers modulo n is an integral domain if and only if n is prime	integer. $1+4$	
3. Let \oplus and \odot be defined on the set of all integers Z by the rule $a \oplus b = a + b - 1$		
and $a \odot b = a + b - ab$ for $a, b \in Z$. Prove that (Z, \bigoplus, \odot) is a ring with unity. Is it		
commutative ring?	4 + 1	
4. Define a field. Prove that a finite integral domain is a field.	2 + 3	