
Presented By Prasenjit Das

 Introduction

 Running Python

 Python Programming
◦ Data types

◦ Control flows

◦ Classes, functions

 Object oriented language
 Interpreted language
 Supports dynamic data type
 Independent from platforms
 Focused on development time
 Simple and easy grammar
 Automatic memory management
 It’s free (open source)!

 Python born, name picked - Dec 1989
◦ By Guido van Rossum, now at GOOGLE

 First public release (USENET) - Feb 1991

 python.org website - 1996 or 1997

 2.0 released - 2000

 Python Software Foundation - 2001

 …

 2.4 released - 2004

 2.5 released – 2006

 Current version: 3.11

 Everything is an object

 Modules, classes, functions

 Exception handling

 polymorphism

 Static scoping

 Indentation for block structure

 Numbers: int, long, float, complex

 Strings: immutable

 Lists and dictionaries

 Extension modules can define new “built-in”
data types

 Fun-to-use "Scripting language"

 Object-oriented
◦ Highly educational

 Very easy to learn

 Powerful, scalable, easy to maintain
◦ high productivity

◦ Lots of libraries

 Reduce development time

 Reduce code length

 Easy to learn and use as developers

 Easy to understand codes

 Easy to do team projects

 Easy to extend to other languages

 System management (i.e., scripting)
 Graphic User Interface (GUI)
 Internet programming
 Database (DB) programming
 Text data processing
 Distributed processing
 Numerical operations
 Graphics
 And so on…

◦ Code 5-10 times more concise

◦ Dynamic typing

◦ Much quicker development

 no compilation phase

 less typing

◦ Yes, it runs slower

 but development is so much faster!

◦ Similar (but more so) for C/C++

 Use Python with Java: JPython!

 Start python by typing "python"

◦ /afs/isis/pkg/isis/bin/python

 Comments start with ‘#’

 >>> 2+2 #Comment on the same line as text

 4

 >>> 7/3 #Numbers are integers by default

 2

 >>> x = y = z = 0 #Multiple assigns at once

 >>> z

 0

 python files usually end with the suffix .py

 but executable files usually don’t have

the .py extension

 Start with # and go to end of line

 What about C, C++ style

comments?

◦NOT supported!

 Much of it is similar to C syntax

 Exceptions:
◦ missing operators: ++, --

◦ no curly brackets,{}, for blocks; uses
whitespace

◦ different keywords

◦ lots of extra features

◦ no type declarations!

 Numbers
◦ Integer, floating-point, complex!

 Strings
◦ characters are strings of length 1

 Booleans are False or True

 The usual notations and operators
 12, 3.14, 0xFF, 0377, (-1+2)*3/4**5, abs(x), 0<x<=5

 Integer division truncates :
 1/2 -> 0 # float(1)/2 -> 0.5

i = 10

d = 3.1415926

s = "I am a string!"

print "%d\t%f\t%s" % (i, d, s)

print “newline\n"

print "no newline"

 No need to declare

 Need to assign (initialize)
 use of uninitialized variable raises exception

 Not typed
if friendly: greeting = "hello world"

else: greeting = 12**2

print greeting

 Everything is a variable:
 functions, modules, classes

 + - * / % (like C)

 += -= etc. (no ++ or --)

 Assignment using =
◦ but semantics are different!

a = 1

a = “Prasenjit" # OK

 Can also use + to concatenate strings

 "hello"+"world" "helloworld" # concatenation

 "hello"*3 "hellohellohello" # repetition

 "hello"[0] "h" # indexing

 "hello"[-1] "o" # (from end)

 "hello"[1:4] "ell" # slicing

 len("hello") 5 # size

 "e" in "hello" 1 # search

 New line: "escapes: \n "

 Line continuation: triple quotes ’’’

 Quotes: ‘single quotes’, "raw strings"

 upper()

 lower()

 capitalize()

 count(s)

 index(s)

 List:
◦ Lists are used to store multiple items in a single

variable.

◦ Lists are created using square brackets:

thislist = ["apple", "banana", "cherry"]
print(thislist)

List items are ordered, changeable, and allow
duplicate values

 Dictionaries are used to store data values in
key:value pairs.

 A dictionary is a collection which is ordered*,
changeable and do not allow duplicates.

 As of Python version 3.7, dictionaries are ordered.
In Python 3.6 and earlier, dictionaries
are unordered

 thisdict = {
"brand": "Ford",
"model": "Mustang",
"year": 1964

}
print(thisdict)

 Tuples are used to store multiple items in a single
variable.

 Tuple items are ordered, unchangeable, and allow duplicate
values.

 Tuples are written with round brackets.

thistuple = ("apple", "banana", "cherry")
print(thistuple)

E.g.,
>>> t = ()
>>> t = (1, 2, 3)
>>> t = (1,)
>>> t = 1,
>>> a = (1, 2, 3, 4, 5)
>>> print a[1] # 2

 What are common characteristics?
◦ Both store arbitrary data objects

◦ Both are of sequence data type

 What are differences?
◦ Tuple doesn’t allow modification

◦ Tuple doesn’t have methods

◦ Tuple supports format strings

◦ Tuple supports variable length parameter in
function call.

◦ Tuples slightly faster

 Integers: 2323, 3234L

 Floating Point: 32.3, 3.1E2

 Complex: 3 + 2j, 1j

 Lists: l = [1,2,3]

 Tuples: t = (1,2,3)

 Dictionaries: d = {‘hello’ : ‘there’, 2 : 15}

 Python allows for user input.
 That means we are able to ask the user for

input.
 The method is a bit different in Python 3.6

than Python 2.7.
 Python 3.6 & Upper versions uses

the input() method.
 Python 2.7 uses the raw_input() method.

 Python 3.6

 username = input("Enter username:")
print("Username is: " + username)

 Python 2.7

 username = raw_input("Enter username:")
print("Username is: " + username)

 class -- a template for building objects

 instance -- an object created from the

template (an instance of the class)

 method -- a function that is part of the

object and acts on instances directly

 constructor -- special "method" that

creates new instances

 Python supports the usual logical conditions from
mathematics:

 Equals: a == b
 Not Equals: a != b
 Less than: a < b
 Less than or equal to: a <= b
 Greater than: a > b
 Greater than or equal to: a >= b
 These conditions can be used in several ways, most

commonly in "if statements" and loops.
 An "if statement" is written by using the if keyword.

 a = 200
b = 33
if b > a:

print("b is greater than a")
elif a == b:

print("a and b are equal")
else:

print("a is greater than b")

 Python has two primitive loop commands:

 while loops

 for loops

 #while loop

 Print i as long as i is less than 6:

 i = 1
while i < 6:
print(i)
i += 1

 A for loop is used for iterating
over a sequence (that is either a
list, a tuple, a dictionary, a set,
or a string).

 With the for loop we can
execute a set of statements,
once for each item in a list,
tuple, set etc.

 Print each fruit in a fruit list:

 #for loop

 fruits = ["apple", "banana", "cherry"]
for x in fruits:
print(x)

 continue statement like in C

 pass keyword:

if a == 0:

pass # do nothing

else:

whatever

def foo(x):

y = 10 * x + 2

return y

 All variables are local inside
function

 Arguments passed by value

def foo(x):

y = 10 * x + 2

return y

print foo(10) # 102

 Pros
◦ Free availability (like Perl, Python is open source).

◦ Stability (Python is in release 3.11).

◦ Very easy to learn and use

◦ Good support for objects, modules, and other reusability
mechanisms.

◦ Easy integration with and extensibility using C and Java.

 Cons
◦ Smaller pool of Python developers compared to other languages,

such as Java

◦ Software performance slow, not suitable for high performance
applications

Thank you

