
Presented By Prasenjit Das

 Introduction

 Running Python

 Python Programming
◦ Data types

◦ Control flows

◦ Classes, functions

 Object oriented language
 Interpreted language
 Supports dynamic data type
 Independent from platforms
 Focused on development time
 Simple and easy grammar
 Automatic memory management
 It’s free (open source)!

 Python born, name picked - Dec 1989
◦ By Guido van Rossum, now at GOOGLE

 First public release (USENET) - Feb 1991

 python.org website - 1996 or 1997

 2.0 released - 2000

 Python Software Foundation - 2001

 …

 2.4 released - 2004

 2.5 released – 2006

 Current version: 3.11

 Everything is an object

 Modules, classes, functions

 Exception handling

 polymorphism

 Static scoping

 Indentation for block structure

 Numbers: int, long, float, complex

 Strings: immutable

 Lists and dictionaries

 Extension modules can define new “built-in”
data types

 Fun-to-use "Scripting language"

 Object-oriented
◦ Highly educational

 Very easy to learn

 Powerful, scalable, easy to maintain
◦ high productivity

◦ Lots of libraries

 Reduce development time

 Reduce code length

 Easy to learn and use as developers

 Easy to understand codes

 Easy to do team projects

 Easy to extend to other languages

 System management (i.e., scripting)
 Graphic User Interface (GUI)
 Internet programming
 Database (DB) programming
 Text data processing
 Distributed processing
 Numerical operations
 Graphics
 And so on…

◦ Code 5-10 times more concise

◦ Dynamic typing

◦ Much quicker development

 no compilation phase

 less typing

◦ Yes, it runs slower

 but development is so much faster!

◦ Similar (but more so) for C/C++

 Use Python with Java: JPython!

 Start python by typing "python"

◦ /afs/isis/pkg/isis/bin/python

 Comments start with ‘#’

 >>> 2+2 #Comment on the same line as text

 4

 >>> 7/3 #Numbers are integers by default

 2

 >>> x = y = z = 0 #Multiple assigns at once

 >>> z

 0

 python files usually end with the suffix .py

 but executable files usually don’t have

the .py extension

 Start with # and go to end of line

 What about C, C++ style

comments?

◦NOT supported!

 Much of it is similar to C syntax

 Exceptions:
◦ missing operators: ++, --

◦ no curly brackets,{}, for blocks; uses
whitespace

◦ different keywords

◦ lots of extra features

◦ no type declarations!

 Numbers
◦ Integer, floating-point, complex!

 Strings
◦ characters are strings of length 1

 Booleans are False or True

 The usual notations and operators
 12, 3.14, 0xFF, 0377, (-1+2)*3/4**5, abs(x), 0<x<=5

 Integer division truncates :
 1/2 -> 0 # float(1)/2 -> 0.5

i = 10

d = 3.1415926

s = "I am a string!"

print "%d\t%f\t%s" % (i, d, s)

print “newline\n"

print "no newline"

 No need to declare

 Need to assign (initialize)
 use of uninitialized variable raises exception

 Not typed
if friendly: greeting = "hello world"

else: greeting = 12**2

print greeting

 Everything is a variable:
 functions, modules, classes

 + - * / % (like C)

 += -= etc. (no ++ or --)

 Assignment using =
◦ but semantics are different!

a = 1

a = “Prasenjit" # OK

 Can also use + to concatenate strings

 "hello"+"world" "helloworld" # concatenation

 "hello"*3 "hellohellohello" # repetition

 "hello"[0] "h" # indexing

 "hello"[-1] "o" # (from end)

 "hello"[1:4] "ell" # slicing

 len("hello") 5 # size

 "e" in "hello" 1 # search

 New line: "escapes: \n "

 Line continuation: triple quotes ’’’

 Quotes: ‘single quotes’, "raw strings"

 upper()

 lower()

 capitalize()

 count(s)

 index(s)

 List:
◦ Lists are used to store multiple items in a single

variable.

◦ Lists are created using square brackets:

thislist = ["apple", "banana", "cherry"]
print(thislist)

List items are ordered, changeable, and allow
duplicate values

 Dictionaries are used to store data values in
key:value pairs.

 A dictionary is a collection which is ordered*,
changeable and do not allow duplicates.

 As of Python version 3.7, dictionaries are ordered.
In Python 3.6 and earlier, dictionaries
are unordered

 thisdict = {
"brand": "Ford",
"model": "Mustang",
"year": 1964

}
print(thisdict)

 Tuples are used to store multiple items in a single
variable.

 Tuple items are ordered, unchangeable, and allow duplicate
values.

 Tuples are written with round brackets.

thistuple = ("apple", "banana", "cherry")
print(thistuple)



E.g.,
>>> t = ()
>>> t = (1, 2, 3)
>>> t = (1,)
>>> t = 1,
>>> a = (1, 2, 3, 4, 5)
>>> print a[1] # 2

 What are common characteristics?
◦ Both store arbitrary data objects

◦ Both are of sequence data type

 What are differences?
◦ Tuple doesn’t allow modification

◦ Tuple doesn’t have methods

◦ Tuple supports format strings

◦ Tuple supports variable length parameter in
function call.

◦ Tuples slightly faster

 Integers: 2323, 3234L

 Floating Point: 32.3, 3.1E2

 Complex: 3 + 2j, 1j

 Lists: l = [1,2,3]

 Tuples: t = (1,2,3)

 Dictionaries: d = {‘hello’ : ‘there’, 2 : 15}

 Python allows for user input.
 That means we are able to ask the user for

input.
 The method is a bit different in Python 3.6

than Python 2.7.
 Python 3.6 & Upper versions uses

the input() method.
 Python 2.7 uses the raw_input() method.

 Python 3.6

 username = input("Enter username:")
print("Username is: " + username)

 Python 2.7

 username = raw_input("Enter username:")
print("Username is: " + username)

 class -- a template for building objects

 instance -- an object created from the

template (an instance of the class)

 method -- a function that is part of the

object and acts on instances directly

 constructor -- special "method" that

creates new instances

 Python supports the usual logical conditions from
mathematics:

 Equals: a == b
 Not Equals: a != b
 Less than: a < b
 Less than or equal to: a <= b
 Greater than: a > b
 Greater than or equal to: a >= b
 These conditions can be used in several ways, most

commonly in "if statements" and loops.
 An "if statement" is written by using the if keyword.

 a = 200
b = 33
if b > a:

print("b is greater than a")
elif a == b:

print("a and b are equal")
else:

print("a is greater than b")

 Python has two primitive loop commands:

 while loops

 for loops

 #while loop

 Print i as long as i is less than 6:

 i = 1
while i < 6:
print(i)
i += 1

 A for loop is used for iterating
over a sequence (that is either a
list, a tuple, a dictionary, a set,
or a string).

 With the for loop we can
execute a set of statements,
once for each item in a list,
tuple, set etc.

 Print each fruit in a fruit list:

 #for loop

 fruits = ["apple", "banana", "cherry"]
for x in fruits:
print(x)

 continue statement like in C

 pass keyword:

if a == 0:

pass # do nothing

else:

whatever

def foo(x):

y = 10 * x + 2

return y

 All variables are local inside
function

 Arguments passed by value

def foo(x):

y = 10 * x + 2

return y

print foo(10) # 102

 Pros
◦ Free availability (like Perl, Python is open source).

◦ Stability (Python is in release 3.11).

◦ Very easy to learn and use

◦ Good support for objects, modules, and other reusability
mechanisms.

◦ Easy integration with and extensibility using C and Java.

 Cons
◦ Smaller pool of Python developers compared to other languages,

such as Java

◦ Software performance slow, not suitable for high performance
applications

Thank you

