SEC 01 (Logic and Sets) F.M: 10 TIME: 30 MIN

* Re	quired	
1.	Email *	
2.	NAME *	
3.	UNIVERSITY REGISTRATION NUMBER *	
4.	UNIVERSITY ROLL NUMBER *	
	Untitled Section	
5.	An argument or statement that has the statement a. Truth Table b. Substitution Instance Mark only one oval.	same form as a given argument form or c. Sufficient Condition d. Statement Variables
	□ A□ B□ C□ D	

6.

	 A statement that contains at least one simple statement as a component Compound Statement b. Contingent Statement c. Consistent Statements d. Simple Statement
	Mark only one oval.
	A
	□ B
	C
	\bigcirc D
7.	
,,	Two sets are called disjoint if there is the empty set. a. Union b. Difference c. Intersection d. Complement
	Mark only one oval.
	A
	В
	С
	\bigcirc D
8.	4 The 1's string for the cote on 1111100000 and 10101010 The coning of the cote in
	4. The bit strings for the sets are 1111100000 and 1010101010. The union of these sets is a. 1010100000
	b. 1010101101 c. 1111111100
	d. 1111101010 Mark only one eval
	Mark only one oval.
	○ A
	○ B
	\bigcirc C
	O D

9.

	5. The set	difference of t	he set A with nui b. Null	ll set is c. U	d. B	
	Mark only one	oval.				
	□ A□ B□ C					
	D					
10.						
	a. not a part b. a partial c c. a partial c	tial ordering bec ordering since it ordering since it	on a set of real nur ause it is not asym is asymmetric and is antisymmetric a ause it is not antisy	netric and irre reflexive nd reflexive	eflexive equals antisymme	tric
	Mark only on	e oval.				
	□ A□ B□ C□ D					
11.						
		rs of the equival	ence relations indu		a, b, c}, d}. The number o	f
	Mark only on	e oval.				
	A					
	В					
	\bigcirc c					
	\bigcirc D					

	_
1	$\boldsymbol{\gamma}$
- 1	_

	8. The less-than relation, <, on a set of real numbers is a. not a partial ordering because it is not asymmetric and irreflexive equals antisymmetric b. a partial ordering since it is asymmetric and reflexive c. a partial ordering since it is antisymmetric and reflexive d. not a partial ordering because it is not antisymmetric and reflexive
	Mark only one oval.
	\bigcirc A
	B
	С
	\bigcirc D
13.	
	9. A partial order \leq is defined on the set $S = \{x, b_1, b_2, b_n, y\}$ as $x \leq b_i$ for all i and $b_i \leq y$ for all i , where $n \geq 1$. The number of total orders on the set S which contain the partial order \leq is
	a. n+4 b. n ² c. n! d. 3
	Mark only one oval.
	A
	B
	◯ C
	\bigcirc D
1.4	
14.	10. Let (A, \le) be a partial order with two minimal elements a , b and a maximum element c . Let $P:A \to \{True, False\}$ be a predicate defined on A . Suppose that $P(a) = True$, $P(b) = False$ and $P(a) \Rightarrow P(b)$ for all satisfying $a \le b$, where \Rightarrow stands for logical implication. Which of the following statements cannot be true? a. $P(x) = True$ for all $x \in S$ such that $x \ne b$ b. $P(x) = False$ for all $x \in S$ such that $b \le x$ and $x \ne c$
	c. $P(x)$ = False for all $x \in S$ such that $x \neq a$ and $x \neq c$ d. $P(x)$ = False for all $x \in S$ such that $a \leq x$ and $b \leq x$
	Mark only one oval.
	\bigcirc A
	В
	С
	\bigcirc D

This content is neither created nor endorsed by Google.

Google Forms