Continuity of Functions of a Single Real Variable Departmental Seminar on Mathematics and its Applications

Subhankar Biswas Student Department of Mathematics Nabadwip Vidyasagar College

24-02-2018

Subhankar (Nabadwip Vidyasagar College) Continuity of Functions of a Single Real Varia

In defining the symbol $\lim_{x\to c} f(x)$, we did not make use of the value of f at x=c (in fact ,such a value may not be defined). Even if f is defined at x=c, the value of f(c) need not always equal to the limiting value I. When we do have f(c) =I, i. e. ,when $\lim_{x\to c} f(x) = f(c)$, we say that f is continuous at x=c. In the present chapter we shall study some deeper properties of continuous function defined over a certain interval I (Open or closed)

Let f be defined on an interval $I \subseteq R$

Suppose c is an interval point of I. The continuity of f at x = c may be defined in the following way :

Definition: f is said to be continuous at x = c if for any arbitrary positive number ϵ (i.e, $\epsilon > 0$) no mater how small, \exists a positive number $\delta(\delta > 0)$ such that $|f(x) - f(c)| < \epsilon$ for all points $x \in |x - c| < \delta$ It means that if f is continuous at c then $\lim_{x \to c} f(x)$ exists and is equal to f(c). This means that f is continuous at x = c if the functions values f(x) are close to f(c) when x is close to c, thus for continuity of f at x = c, f must be defined at x = c and also in some neighbourhood around c, otherwise. We can not find $\lim_{x \to c} f(x)$ which must exist and equals to f(c). Hence for continuity of f at a point x = c, we must have

•
$$f$$
 is defined at c i.e, $f(c)$ exists.

$$\lim_{x \to c} f(x) \text{ exists i.e, } \lim_{x \to c^+} f(x) = \lim_{x \to c^-} f(x)$$

•
$$f(c)$$
 and $\lim_{x \to c} f(x)$ must be equal.

If any of these condition fail, then f is not continuous at c or f is discontinuous at x = c.

Sometimes a functions f may be continuous on one side of c. We call such a continuity as one side continuity. More explicitly,

Definition

(1) f is said to be right continuous at point x = a, if $\lim_{x \to a^{+0}} f(x) = f(a)$, i.e., given any $\epsilon > 0$, there exists $\delta > 0$ such that for all $x \in (a, a + \delta)$ we have $|f(x) - f(a)| < \epsilon$. Here f must be defined in some right neighbourhood of a. (2) f is said to be left continuous at a point x = b if $\lim_{x \to b^{-0}} f(x) = f(b)$, i.e., given any $\epsilon > 0, \exists \delta > 0$ such that for all $x \in (b-\delta, b)$ we have $|f(x) - f(b)| < \epsilon$ Here f must be defined in some left neighbourhood of b.

→ < Ξ → <

Continuity of f in an open interval (a,b): f is continuous at every point of c, where a < c < b, Continuity of f in a closed interval [a,b]:

- If c is an interior point of [a,b], then f is continuous at x = c.
- 2 At the left end point a, f is right continuous.
- At the right end point b, f is left continuous.

The definition of continuity at a point can also be defined in the language of sequence.

Example:

Example

We are to show that $f(x) = \sin x$ is continuous for all values of x. Here also the domain of $f(x) = \sin x$ is R, the set of all real numbers. Take any value a of x, where $a \in R.\sin x$ will be continuous for x = a if for any $\epsilon > 0$, we can find a value of $\delta > 0$ such that $|\sin x - \sin a| < \epsilon$ whenever $|x - a| < \delta$.Now

$$|\sin x - \sin a| = |2\sin(x - a)/2\cos(x + a)/2| = 2|\sin(x - a)/2||\cos(x + a)|$$

As
$$|\cos(x+a)/2| \le 1$$
 for every value of $x \in R$ and
 $|\sin(x-a)/2| < |(x-a)/2|$, for
 $0 < |(x-a)/2| < \pi/2[: |\sin x| < |x| < |\tan x|$ for $0 < x < \pi/2]$
 $|\sin x - \sin a| = 2|\sin(x-a)/2||\cos(x+a)/2| < 2|(x-a)/2| = |x-a|$

 $|\sin x - \sin a| < \epsilon$ for all x for which $|x - a| < \delta$, where $\delta = \epsilon$. i.e, $\sin x$ is continuous at any arbitrary point $a \in R \Rightarrow \sin x$ is continuous for all $x \in \mathbb{R}$.

- Ghosh and Maity : An Introduction to Analysis-Differential Calculus.
- 🔋 Shanti Narayan : Differential Calculus.
- Das and Mukherjee : Differential Calculus.
- S.C.Malik and S. Arora: Mathematical Analysis
- S.K.Mapa: Introduction to Real Analysis

THANK YOU

-

・ロト ・ 日 ト ・ 田 ト ・