712/Math.

UG/6th Sem/MATH-H-CC-T-14/23

U.G. 6th Semester Examination - 2023 MATHEMATICS [HONOURS] Course Code : MATH-H-CC-T-14 (Ring Theory and Linear Algebra)

Full Marks : 60 Time : 2¹/₂ Hours
The figures in the right-hand margin indicate marks.
Candidates are required to give their answers in their own words as far as practicable.
The symbols and notations have their usual meanings.

- 1. Answer any ten questions: $2 \times 10 = 20$
 - a) Is $f:(\mathbb{Z}, +, .) \rightarrow (2\mathbb{Z}, +, .)$ defined by $f(n) = 2n, n \in \mathbb{Z}$ a ring homomorphism? Justify your answer.
 - b) Let R be a ring with unity 1 and $\phi: R \to R'$ be a ring homomorphism. If $\phi(1) = 0$, prove that kernel of $\phi = R$.
 - c) Show that the mapping $f: \mathbb{Z}[\sqrt{2}] \to \mathbb{Z}[\sqrt{3}]$ defined by

[Turn Over]

$$f(a+b\sqrt{2}) = a+b\sqrt{3}, a+b\sqrt{2} \in \mathbb{Z}\left[\sqrt{2}\right]$$

is a group homomorphism but not a ring homomorphism.

d) Show that
$$\frac{\mathbb{Z}}{2\mathbb{Z}} \approx \frac{5\mathbb{Z}}{10\mathbb{Z}}$$
.

- e) Show that quotients field of $2\mathbb{Z}$ is same as the field of quotients of \mathbb{Z} .
- f) If F is a field, show that F[x] is an integral domain but not a field.
- g) Is $\frac{\mathbb{Z}[x]}{\langle x \rangle}$ a field? Justify your answer.
- h) Find the characteristic polynomial of the linear operator $D: V \to V$ defined by $D(f) = \frac{df}{dt}$, where V is the space of functions with basis $S = \{\sin t, \cos t\}.$
- i) If λ is an eigen value of an invertible linear operator *T*, show that λ^{-1} is an eigen value of T^{-1} .
- j) Find the minimal polynomial of the matrix

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}.$$

712/Math.

12

(2)

- k) Show that $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is not diagonalizable.
- 1) If $T: V \to V$ be a linear mapping, show that kernel of T is invariant under T.
- m) Let S_1 , S_2 are subsets of a vector space V and $S_1 \subseteq S_2$. Prove that $S_2^{\perp} \subseteq S_1^{\perp}$.
- n) Show that an orthogonal set of non-null vectors in a Euclidean space V is linearly independent.
- o) Prove that for all α , β in a Euclidean space V, $\langle \alpha, \beta \rangle = 0$ if and only if $||\alpha + \beta|| = ||\alpha - \beta||$.

2. Answer any four questions: $5 \times 4 = 20$

- a) Let R and R' be two rings and $\phi: R \to R'$ be a ring homomorphism. Define Ker ϕ and show that Ker ϕ is an ideal of R. 1+4
- b) State and prove Fundamental theorem of ring homomorphism.
- c) Show that $\mathbb{Z}[x]$ is an integral domain but not a principal ideal domain.
- d) Prove that for prime number p, $f(x) = x^{p-1} + x^{p-2} + ... + x + 1$ is irreducible in $\mathbb{Q}[x]$.

712/Math.

[Turn Over]

Let $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ be a basis of a vector space *V* over a field *F* and $\phi_1, \phi_2, ..., \phi_n \in V^*$ be the linear functionals defined by

$$\phi_i(\alpha_j) = \begin{cases} 1, & if \quad i=j\\ 0, & if \quad i\neq j. \end{cases}$$

Show that $\{\phi_1, \phi_2, ..., \phi_n\}$ is a basis of V^* .

- f) Find all eigen values and a basis of each eigen space of the operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (2x + y, y - z, 2y + 4z).
- g) Let $T: V \to U$ be linear and $T': U^* \to V^*$ be its transpose. Show that kernel of T' is the annihilator of the image of T.

3. Answer any **two** questions: $10 \times 2=20$

- a) i) Let F be a field f(x) be a polynomial in F[x] of degree 2 or 3. Prove that f(x) is irreducible if and only if it has a zero in F.
 - ii) Show that the polynomial $x^2 + x + 1$ is irreducible in $\mathbb{Z}_2[x]$.

iii) Show that the quotient ring $\frac{\mathbb{Z}_2[x]}{\langle x^2 + x + 1 \rangle}$ is a field of 4 elements. 4+2+4

712/Math.

e)

(4)

- b) i) Let V be the vector space of polynomials over \mathbb{R} of degree ≤ 1 . Let ϕ_1 and ϕ_2 be linear functionals defined by
- $\phi_1[f(x)] = \int_0^1 f(x) dx \text{ and } \phi_2[f(x)] = \int_0^2 f(x) dx.$ Find the basis $\{f_1, f_2\}$ of V which is dual to $\{\phi_1, \phi_2\}.$
 - ii) Let *W* be the subspace of \mathbb{R}^4 spanned by $v_1 = (1, 2, -3, 4)$ and $v_2 = (0, 1, 4, -1)$. Find a basis of the annihilator of *W*.

5+5

- c) i) Find all ring homomorphisms from $\mathbb{Z}_{20} \to \mathbb{Z}_{30}$.
 - ii) Find the quotient field of the integral domain $\mathbb{Z}\left[\sqrt{5}\right] = \left\{a + b\sqrt{5} : a, b \in \mathbb{Z}\right\}$.
 - iii) Let v₁, v₂, ..., v_n be non-zero eigen vectors of an operator T: V → V belonging to distinct eigen values λ₁, λ₂, ..., λ_n. Prove that v₁, v₂, ..., v_n are linearly independent.

[Turn Over]

712/Math.

- d) i) Determine all possible Jordan canonical forms for a linear operator $T: V \to V$ whose characteristic polynomial is $(t-2)^3 (t-5)^2$.
 - ii) Let V be a vector space of polynomials f(t) of degree less than 4 and real coefficients. Define inner product on V as $\langle f, g \rangle = \int_{-1}^{1} f(t)g(t) dt$. Apply the Gram-Schmidt orthogonalization process to $\{1, t, t^2, t^3\}$ to find an orthogonal basis $\{f_0, f_1, f_2, f_3\}$ of V. 5+5

10