SECOND INTERNAL ASSESSMENT, 2019 DEPARTMENT OF MATHEMATICS NABADWIP VIDYASAGAR COLLEGE

FULL MARKS: 40

CC-1

Answer any four questions:

- 1.1 Find the constant a and b so that $\lim_{x\to 0} \left(\frac{\sin 2x}{x^3} + \frac{a}{x^2} + b \right) = 1$
- 1.2 If the cost C of producing x unit of a particular commodity is $C(x) = \frac{1}{8}x^2 + 5x + 98$ and the selling price P when x units are produced is $P(x) = \frac{1}{2}(75 x)$, then determine the level of production that maximizes the profit.
- 1.3 Derive the reduction formula for $\int (\log x)^n dx$, $n \ge 1$. Hence evaluate $\int (\log x)^4 dx$.
- 1.4 Find the arc length of the curve $y = \frac{x^3}{24} + \frac{2}{x}$ from x = 2 to x = 3
- 1.5 A sphere of radius r passes through the origin and meets the co-ordinate axes at P,Q,R. Prove that the triangle PQR lies on the sphere $9(x^2 + y^2 + z^2) = 4r^2$.
- 1.6 Find the equation of the cone whose vertex is at the point (α, β, γ) and whose generating lines passes through the curve $\frac{x^2}{\alpha^2} + \frac{y^2}{b^2} = 1, z = 0.$
- 1.7 Solve: $(x^2 4xy 2y^2)dx + (y^2 4xy 2x^2)dy = 0$.
- 1.8 Solve: $(x + \tan y)dy = \sin 2y dx$.

CC-2

Answer any four questions:

- 2.1 For n real numbers prove that $A.M \ge G.M$.
- 2.2 Solve the equation $x^3 18x 35 = 0$ by Cardan's Method.
- 2.3 Use Euclidean algorithm to find integers u and v satisfying 30u + 72v = 12.
- 2.4 A relation ρ is defined on the set \mathbb{Z} by " $a\rho b$ if and only if a b is divisible by 5" for $a, b \in \mathbb{Z}$. Examine if ρ is an equivalence relation on \mathbb{Z} .
- 2.5 Determine the condition for which the system

$$x + y + z = 1$$
, $x + 2y - z = b$, $5x + 7y + az = b^2$

has (i) only one solution (ii) no solution (iii) many solution.

2.6 Apply elementary row operation to reduce the matrix $\begin{pmatrix} 2 & 0 & 4 & 2 \\ 3 & 2 & 6 & 5 \\ 5 & 2 & 10 & 7 \\ 0 & 3 & 2 & 5 \end{pmatrix}$ to a row echelon

matrix.

- 2.7 Determine the rank of the matrix $\begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 4 & 8 & 6 \\ 3 & 6 & 6 & 3 \end{pmatrix}$.
- 2.8 Find the eigen values and corresponding eigen vectors of the matrix $\begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$.

 $5 \times 4 = 20$

 $5 \times 4 = 20$

TIME 1 H 30 MIN