Test Examination-2018 Sub: Mathematics (Honours)

Sup: Mathematics (Honours) Nabadwip Vidvasagar College

	Nabadwip Vidyasagar College	
	Paper: I F.M100	Time: 4 hours
1. <u>An</u> :	swer any five questions:	$1 \times 5 = 5$
a)	Define commutative property of a binary operation.	
b)	State the Fundamental theorem of classical algebra.	
c)	Write the polar equation of the circle with radius r and ce	entre at $\left(r, \frac{\pi}{2}\right)$.
d)	Give an example of injective mapping.	
e)	Applying Descartes' rule of signs find the number of positive roots of the equation $x^4 + 2x^2 + 3x - 1 = 0$.	
f)) What is the rank of unit matrix of order three? Justify your answer.	
g)) Does the equation $x^2+3xy + 2y^2 = 0$ represents a pair of straight lines? If so, find the angle between them?	
h)	Show that the diagonals of a rhombus are at right angles.	
2)	. Answer any ten questions:	$2 \times 10 = 20$
a)	Find the principal value of $(1 + i)^i$.	
b)	Give an example of mapping which is neither injective no	r surjective.
c)	What is the equivalence relation, give an example.	
d)	Prove that every orthogonal matrix is non-singular.	
e)	Find the values of c for which the plane $x + y + z = c$ to	uches the sphere
	$x^2 + y^2 + z^2 - 2x - 2y - 2z - 6 = 0.$	
f)	f) Show that the three vectors $\overline{a} = 2i - j + k$, $\overline{b} = i - 3j - 5k$, $\overline{c} = 3i - 4j - 4k$ form the sides of a	
	right-angled triangle.	
g)	Express the matrix $\begin{bmatrix} 1 & 3 & 4 \\ 7 & 2 & 6 \\ 2 & 8 & 1 \end{bmatrix}$ as a sum of a symmetric and	skew-symmetric matrices.
h)	Prove that the circles $x^2 + y^2 + 2ax + c^2 = 0$ and $x^2 + y^2 + 2by$	$+c^2 = 0$ will touch each other if
	$\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}.$	
i)	For what values of μ , the equation $xy + 5x + \mu y + 15 = 0$ rep	resents a pair of straight lines?
j)	If $\left \vec{\alpha} + \vec{\beta} \right = \left \vec{\alpha} - \vec{\beta} \right $, then show that $\vec{\alpha}$ is perpendicular to $\vec{\beta}$.	
k)	k) In a group (G, \circ) , b is an element of order 30. Find the order of b^{18} .	

- **k)** In a group (G,\circ) , b is an element of order 30. Find the order of b^{18} .
- I) If α , β , γ are the roots of the equation $ax^3 + bx^2 + cx + d = 0$, $(a \neq 0)$, find the value of $\sum \beta^2$.

3). Answer any five questions:

a) (i)Solve the following equation by Cardan's method

 $x^3 + 3x + 1 = 0.$

(ii) If α , β , γ be the roots of the equation $x^3 - px^2 + qx - r = 0$, then form the equation whose roots are

$$\beta\gamma + \frac{1}{\alpha}, \gamma\alpha + \frac{1}{\beta}, \alpha\beta + \frac{1}{\gamma}.$$

(iii)Define adjoint of a square matrix. Show that for a square matrix of order n,

$$A(adjA) = (adjA)A = (\det A)I_n$$
(5+5+5)

b) (i)Show that a skew-symmetric determinant of order 3 is zero.

(ii)State and prove Lagrange's theorem of groups.

(iii)Find the rank of the matrix $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$.

(iv) Write down the matrix

$$\begin{bmatrix} -2 & 3 & 2 \\ 6 & 0 & 3 \\ 4 & 1 & -1 \end{bmatrix}$$

as the product of elementary matrices.

c) (i) If the St. lines $ax^2 - 2hxy + by^2 = 0$ form an equilateral triangle with the

St. line $x \cos \alpha + y \sin \alpha = p$, show that $\frac{a}{1 - a \cos 2\alpha} = \frac{h}{2 \sin 2\alpha} = \frac{b}{1 + 2 \cos 2\alpha}$.

(ii) If $a^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a pair of St. lines, show that the area of the triangle formed by the bisectors of the angles between them and the axis of x_{is}

$$\frac{\sqrt{(a-b)^{2}+4x^{2}}}{2x} \cdot \frac{ca-g^{2}}{ab-h^{2}}.$$
(iii) If α, β, γ be unit vectors satisfying the condition $\alpha + \beta + \gamma = 0$, then show that
 $\alpha.\beta + \beta.\gamma + \gamma.\alpha = -\frac{3}{2}.$
(5+5+5)

d) (i)Find the equation of the plane passes through the point (2,1,-1) and is orthogonal to each of the planes x-y+z=1 and 3x+4y-2z=0.

 $5 \times 15 = 75$

(4+5+2+4)

(ii) Show that the equations of the planes passing through the points (0,4,-3), (6,-4,3) and cutting of intercepts from the axes whose sum is zero, are 2x-3y-6z=6 and 6x+3y-2z=18.

(iii) Show that the volume of the parallelepiped whose edge are represented by $3\hat{i}+2\hat{j}-4\hat{k}$, $3\hat{i}+\hat{j}+3\hat{k}$ and $\hat{i}-2\hat{j}+\hat{k}$ is 49cubic units. (5+5+5)

e)(i) Find the image of the point (-3,8,4) in the plane 6x-3y-2z+1=0.

(ii) Find the centre and radius of the circle $x^2 + y^2 + z^2 = 25$, x + 2y + 2z + 9 = 0.

(iii) If $f: A \to B$ and $g: B \to C$ be both bijective, show that the composite mapping $g \circ f: A \to C$ is bijective. What conclusion can you draw about its converse ? (5+5+5)

f)(i) Show that the volume of the tetrahedron formed by points (0,0,0), (3,2,-1), (4,1,4) and (5,3,5) is $\frac{14}{3}$ cubic units.

(ii) Find the coordinates of the limiting points of the circles $x^2 + y^2 + 2x + 4y + 7 = 0$ and $x^2 + y^2 + 4x + 2y + 5 = 0$.

(iii) In a group (G,*) the elements a and b commute and O(a) and O(b) are prime to each other. Show that O(a*b) = O(a).O(b). Here O(a) means the order of the element a.

g) (i) Prove that the straight lines joining the origin to the points of intersection of the straight line $\frac{x}{\alpha} + \frac{y}{\beta} = 2$ and the circle $(x - \alpha)^2 + (y - \beta)^2 = \gamma^2$ are at right angles if $\alpha^2 + \beta^2 = \gamma^2$.

(ii) Find the eccentricity, latus rectum and the directrix of the following conics

$$\frac{4}{r} = 3 - 5\cos\left(\theta - \frac{\pi}{4}\right).$$

(iii) Prove that any two left cosets of a subgroup H have the same cardinality. (5+5+5)