Test Examination-2018 Sub: Mathematics (Honours)

Nabadwip Vidyasagar College		
Paper: III	F.M50	Time: 2 hours
 (1) Answer any four questions: a) State Archimedean property o b) Show that Ø(5040) = 1152. c) Define the Division ring. d) Show that if a/b and b/c, then 	n a/c.	1 x 4 = 4
e) Find the eigen values of the n	hatrix $\begin{pmatrix} 1 & 0 \\ -2 & 3 \end{pmatrix}$.	
	al number. emum of the following set : $\left\{1 + \frac{1}{n}\right\}$	$2 \ge 4 = 08$ $: n \in N \left\{ \cup \left\{ -1 - \frac{1}{n} : n \in N \right\} \right\}.$
d) State Riemann's rearrangemene) State Cantor-Dedekind axiom.(3) Answer any three questions:	nt theorem.	6 x 3 = 18
 b) i) Test whether the following s linearly dependent or linearly ii) Prove that a finite integral c) i) Examine the validity of the f(x) = x³ - 4x in [-2,2]. 	prove that $3^{2n} - 8n - 1$ is divisible et of vectors (1, 2, -1), (3, -1, 2) and r independent. domain is a field. hypothesis and the conclusion of Ro	(5, 3,0) in Euclidean 3-space is (3+3)
ii) Use Taylor's theorem show	that $x - \frac{x^3}{6} < sinx < x$ for x>0.	(3+3)
 continuous but not uniformly (4) Answer any two questions: a) i) Use Gram Schmidt proce (1, 3, 4) of the Euclidean space 	ess to obtain an orthogonal basis fro $pace\ \mathbb{R}^3$ with standard inner produc	(2+4) 10 x 2 = 20 om the basis set {(1, 0, 1), (1, 1, 1), ct.
find $f^{-1}g^{-1}$.		(5+5)
	quence for p>0. Prove that the serie	· · · · · · · · · · · · · · · · · · ·
iii) State and prove Euclid's fu		(2+4+2)

iii) State and prove Euclid's first theorem. (3+4+3)