Test Examination-2018 Nabadwip Vidyasagar College

Sub: Mathematics (Honours)			
Paper: IV	F.M50	Time: 2 hours	
- - - -			
1. Answer any two questions:	6x2=12		
a) Using two phase method solve $Max Z = 2x_1 + x_2 - x_3$ subject to $4x_1 + 6x_2 + 3x_3 \le 3x_1 - 6x_2 - 4x_3 \le 1$ $2x_1 - 3x_2 - 5x_3 \ge 4$			
$\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \ge 0$			
b) Solve the L.P.P.			
$\begin{array}{ll} \text{Minimize} \ Z = 2x_1 - 3x_2\\ \text{subject to} \ -x_1 + 2x_2 \leq 4 \end{array}$			
$\begin{array}{l} x_{1} + x_{2} \leq 6 \\ x_{1} + 3x_{2} \geq 9 \\ x_{1}, x_{2} \geq 0 \end{array}$			
c) Solve the following travelling s	alesman problem:		
A B C D E			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
ہ d) Solve the following transportation	on problem:		
D_1 D_2 D_3 a_i			
0 ₁ 8 7 3 60			
0 ₂ 3 8 9 70			
03 11 3 5 80			
b _i 50 80 80			
 Answer any one question: a) i. Give an example of convex poly 	/hedron.		
ii. Examine whether the set is cor	vex or not		
iii. $x_1 = 2$, $x_2 = 4$ and $x_3 = 1$ is a	$S = \{(x_1, x_2) \colon x_1 \geq 2, x_2 \leq 3\}.$ feasible solution to the system of equations		
$2x_1 - x_2 + 2x_3 x_1 + 4x_2$			
Reduce the feasible solution to a ba			
b) i. What do you mean by 'Saddle F ii. Find the dual of the following p Minimize $Z = 3x_1 - 2x_2$ Subject to $2x_1 + x_2 \le 1$. $-x_1 + 3x_2 \ge 4$. $x_1, x_2 \ge 0$.			
iii. Solve the following game prob	lem		
$B_1 B_2 B_3$			
1 -1 3			
A_2 3 5 -3			
6 2 -2			

3. Answer any three questions:

- a) A particle is projected upwards with a velocity U in a medium whose resistance varies as the square of the velocity. Prove that it will return to the point of projection with velocity $v = \frac{UV}{\sqrt{U^2 + V^2}}$ after a time $\frac{V}{g} \left\{ \tan^{-1} \frac{U}{v} + \tan^{-1} \frac{v}{v} \right\}$, where V is the terminal velocity.
- b) A heavy particle slides down a rough cycloid of which the coefficient of friction is μ . Its base is horizontal and vertex downwards. If it starts from a cusp and comes to rest at the vertex, then prove that $\mu^2 e^{\mu\pi} = 1$.
- c) A particle describes a plane curve under the action of a central force ρ per unit mass. Prove that in usual notation the differential equation of the path of the particle is $\frac{h^2}{p^3} \frac{dp}{dr} = \rho$.
- d) State the principle of the conservation of linear momentum. Show that change in kinetic energy of a particle is equal to the work done by external forces.
- e) Find the tangential and normal components of acceleration of a particle moving along a plane curve.

4. Answer any one question:

5.

a) i. Explain what are meant by 'impulse of a force' and 'impulsive force'.

ii. A particle moves with a central acceleration $u\left(r + \frac{a^4}{r^3}\right)$ being projected from an apse at a distance *a* with a velocity $2\sqrt{u}a$. Prove that it describes the curve $r^2\left(2 + \cos\sqrt{3}\theta\right) = 3a^2$.

b) i. State Kepler's laws of planetary motion.
 ii. A gun of mass M fires a shell of mass m horizontally and energy of explosion is such as would be sufficient to project the

shell vertically to the height h. Show that velocity of the recoil of the gun is $\left(\frac{2m^2gh}{M(m+M)}\right)^{\frac{1}{2}}$. (2+5)

Ans	wer any one question:	5x1=5
a)	i. Find the stationary points of $f(x) = x^2 + 4x + 2$.	
	ii. Evaluate $\lim_{n\to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}}$.	(2+3)
b)	i. Show that $f(x) = x^3 - 6x^2 + 24x + 14$ has neither maximum or minimum. ii. Find the maximum and minimum value of $x + \sin 2x$ for $0 < x < \pi$.	(2+3)

6x3=18

7x1=7

(2+5)