NABADWIP VIDYASAGAR COLLEGE **TEST EXAMINATION 2020** PAPER:-VI

FULL MARKS: 50

1. Answer any eight questions:

a) Give an example of a map $f: \mathbb{R}^2 \to \mathbb{R}$ such that $f_x(0,0)$ exists while $f_y(0,0)$ does not exists.

b) Let $f: [0,1] \rightarrow [0,1]$ be defined by $f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ -1 & \text{if } x \text{ is irrational} \end{cases}$. Compute upper integral and lower

integral of f.

c) If $f_n(x) = x^n \forall x \in [0,1]$ then show that $\{f_n\}_{n=1}^{\infty}$ is not uniformly convergent on [0,1].

d) Find radius of convergence of the power series $\sum \frac{x^n}{n^2}$.

e) Evaluate $\int_0^1 \int_0^2 x^3 y \, dx \, dy$.

f) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = xy \ \forall (x, y) \in \mathbb{R}^2$. Show that f is differentiable everywhere. g) Prove that every discrete metric space is complete.

h) Prove that in a metric space complement of every singleton set is open set.

i) Verify implicit function theorem for the function $f(x, y) = x^2 + y^2 - 1$ at (0,1).

i) Show that in a metric space each open ball is an open set.

k) For any three points x, y, z in a metric space (X, d), show that $|d(x, z) - d(y, z)| \le d(x, y)$.

l) Using $\varepsilon - \delta$ definition show that

$$\lim_{(x,y)\to(0,0)} \left(x \sin \frac{1}{y} + y \sin \frac{1}{x} \right) = 0$$

2. Answer any four questions:

a) Define oscillatory sum of a function f(x) for a partition P in [a,b]. State and prove the necessary and sufficient condition for a function to be R-integrable in terms of oscillatory sum. 1 + 1 + 4

b) State Dirichlet's condition. Expand in Fourier series $x^2 + x$ on $-\pi < x < \pi$ and deduce that $\frac{\pi^2}{c} =$ $1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots$ 2 + 3 + 1

c) Let $q: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$g(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, for(x,y) \neq (0,0) \\ 0, for(x,y) = (0,0) \end{cases}$$

Prove that g is continuous everywhere except (0,0), even though the partial derivatives exists at (0,0). Check whether the function is differentiable at (0,0). 4 + 2

d) Find the stationary points of the function f(x, y, z) = x + y + z on the surface $S = \{(x, y, z) \in A\}$ R^3 : $ax^2 + by^2 + cz^2 = 1$ }. Determine maximum and minimum values of f on the surface S. 3+3 e) Solve $x^{2}p + y^{2}q = (x + y)z$

f) Using laplace transform solve $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^{-x}$, given y(0) = y'(0) = 0.

g) Establish Cantor's Intersection Theorem in a complete metric space.

3. Answer any one question:

- a) i) Show that the integral $\int_0^{\frac{\pi}{2}} \log \sin x \, dx$ is convergent and hence evaluate it. ii) Prove that a compact subset of a metric space (*X*. *d*) is closed and bounded.
- b) i) Solve $(1 t^2)\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 2y = 0$ in power of t.
 - ii) State and prove sufficient condition for differentiability of a function of two variables. 5 + 5

$6 \times 4 = 24$

 $2 \times 8 = 16$

 $10 \times 1 = 10$

5 + 5