Test Examination 2019

Nabadwip Vidyasagar College

	Sub: Mathematics (Honours) Paper: VI F.	M50	Time: 2 hour
(1)	Answer any five questions:	1 ×	: 5 = 5
	a) Define radius of convergence of a power series $\sum a_n x^n$.		
	b) Give an example of a totally bounded metric space.		
	c) State Bonnet's form of the Second Mean Value Theorem.		
	d) State Young's Theorem.		
	e) Show that $\frac{9}{10}\Gamma\left(\frac{8}{3}\right) = \Gamma\left(\frac{2}{3}\right)$		
	f) If $a > 0$ then prove that $\int_a^\infty \frac{1}{x} dx$ does not exist.		
	g) When a map $f: \mathbb{R}^2 \to \mathbb{R}$ is said to be differential at a point (a, b) .		
(2)	Answer any five questions:	2 x	5 = 10
	a) Define stationary point and saddle point of a function.		
	b) Prove that an infinite discrete metric space cannot be totally bounded.		
	c) Find the radius of convergence of the power series $\sum \frac{x^n}{n^2}$.		
	d) Let (X, d) be a metric space. Show that the (X, d_1) is also a metric space	, where $d_1(x, y)$	$=\frac{\mathrm{d}(\mathrm{x},\mathrm{y})}{1+\mathrm{d}(\mathrm{x},\mathrm{y})}.$
	e) Using Weierstrass' M-Test, show that the series $\sum_{n=1}^{\infty} \frac{\cos nx}{n^p}$ (p>1) is uniform	ormly convergen	t on (−∞, ∞).
	f) Verify implicit function theorem for the function $f(x, y) = x^2 + y^2 - 1$ a	at (0,1).	
	g) Let $f: [0,1] \rightarrow [0,1]$ be defined by		
	f(x)=1, x is rational		
	=-1, x is irrational		
	Compute upper integral and lower integral of f.		
(3)	Answer any three questions:	5	x 3 =15
	a) Solve $x^2p + y^2q = (x + y)z$.		
	b)Show that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$		
	c) Find the Jacobian $\frac{\partial(y_1,y_2)}{\partial(x_1,x_2)}$, where $y_1 = x_1(1-x_2)$ and $y_2 = x_1x_2$.		
	d) Expand $f(x, y) = x^2y + 3y - 2$ in power of (x-1) and (y-2).		
	e) If $f\colon [a,b] \to \mathbb{R}$ is monotonic, then prove that f is Riemann integrable.		
(4)	Answer any two questions:	10	x 2 = 20
	a) i) ii) Show that the function f, where		
	$f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$ if $x^2 + y^2 \neq 0$		
	$\sqrt{x^{2}+y^{2}} = 0$, if $x = y = 0$		
	is continuous, possesses partial derivatives but is not differentiable at	the origin.	
	iii) Let $\pi: \mathbb{R}^2 \to \mathbb{R}$ be defined by $\pi(x, y) = x$. Find the directional derivative of π at (0,0) in the		
	direction (3,5).		(6+4)
	b) i) Prove that a closed subset of a complete metric space is complete.		(0,1)
	π		(5.5)
	ii) Show that the integral $\int_0^{\frac{1}{2}} \log \sin x dx$ convergent and hence evaluate i	π.	(5+5)
	ii) Show that the integral $\int_{0}^{\frac{\pi}{2}} \log \sin x dx$ convergent and hence evaluate in c) i) Expand $x + x^2$ in Fourier series on $-\pi < x < \pi$ and deduce that $\frac{\pi^2}{6}$, ,