Test Examination 2018

Nabadwip Vidyasagar College

	Nabadwip Vidyasagar College				
Sub:	: Mathematics (Honours)	Paper: VI	F.M50	Time: 2 hours	
) Answe a)	er any five questions: Define the upper Darboux	y sum of a bounded funct	tion f in [a h]	1 x 5 = 5	
a) b)					
c)	State Bonnet's form of the		eorem.		
, d)					
e)	Show that $\frac{9}{10}\Gamma\left(\frac{8}{3}\right) = \Gamma\left(\frac{2}{3}\right)$)			
f)	Examine whether the imp	proper integral $\int_0^\infty \frac{dx}{1+x^2} e^{-\frac{1}{2}x^2}$	xists.		
Answe	er any five questions:			2 x 5 = 10	
	ve an example of a Cauchy s at space.	sequence in a metric spa	ce which does not conv	erge to an element of	
b) Fir	nd the radius of convergenc	e of the power series \sum_{1}^{c}	$\sum_{n=1}^{\infty} \frac{n^n}{n!} x^n.$		
	t (X,d) be a metric space. Sh			$d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}.$	
–) e) Ve	sing Weierstrass' M-Test, sh $-\infty, \infty$). erify implicit function theore ven f(x)=0, x is rational		11-		
_	=1, x is irrational				
	ove from definition that f is	not Riemann integrable	on [a,b], a <b.< td=""><td>Г у 2 –1Г</td></b.<>	Г у 2 –1Г	
	er any three questions: ind the complete integral of	$f px + 3qy = 2(z - x^2)^2$	²) by Charpit's Method.	5 x 3 =15	
	olve (y+z)p + (z+x)q = x + y Jsing Lagrange's method, fir		$f f(x, y, z) = x^2 y^2 z^2$ sub	oject to subsidiary	
	pondition $x^2 + y^2 + z^2 = c$				
	$xpand f(x, y) = x^2y + 3y -$	- 2 in power of (x-1) and	d (y-2).		
Answer any two questions: d(y, y)		10 x 2 = 20			
a) i) I	Find the Jacobian $\frac{\partial(y_1,y_2)}{\partial(x_1,x_2)}$,	where $y_1 = x_1(1 - x_2)$	and $y_2 = x_1 x_2$.		
ii)	Show that the function f, w	here			
	$f(x, y) = \frac{xy}{\sqrt{x^2 + y^2}}$ if $x^2 + y$	$v^2 \neq 0$			
	= 0, if $x = y = 0$				
	is continuous, possesses pa	rtial derivatives but is no	ot differentiable at the o	rigin.	
iii)	Let $\pi: \mathbb{R}^2 \to \mathbb{R}$ be defined l	by $\pi(x, y) = x$. Find the	directional derivative of	π at (0,0) in the	
	rection (3,5).			(2+5+3)	
b) i) 9	Show that Euclidean n-space	e \mathbb{R}^n is a complete metri	ic space, under a metric	specified by you.	
ii)	Show that the integral $\int_0^{\frac{\pi}{2}} lc$	ogsinx dx convergent and	d hence evaluate it.	(5+5)	
· · · ·	Expand $x + x^2$ in Fourier s	series on – $\pi < x < \pi$ and	d deduce that $\frac{\pi^2}{\epsilon} = 1$	$+\frac{1}{2^2}+\frac{1}{3^2}+\cdots$	
C) I) I			0	2 J	